login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158942
Nonsquares coprime to 10.
1
3, 7, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 63, 67, 69, 71, 73, 77, 79, 83, 87, 89, 91, 93, 97, 99, 101, 103, 107, 109, 111, 113, 117, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 147, 149, 151, 153, 157, 159, 161, 163
OFFSET
1,1
COMMENTS
Odd primes + odd nonprime integers that have an odd numbers of proper divisors A082686, are the result of a suppression of integers satisfying: 2n (A005843); n^2 (A000290); n^2+n (A002378). Of these, we can suppress the multiples of 5 (A008587).
Decimal expansion of 1/10^(n^2+n) + 1/10^(n^2) + 1/10^(5*n) + 1/10^(2*n) gives a 0 for these integers.
2n + n(n+1) + n^2 = 2n^2 + 3n = A014106.
2n^2 + 3n + 5n = 2n^2 + 8n = 2n(n+4) = A067728 8(8+n) is a perfect square.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Select[Range@ 163, ! IntegerQ@ Sqrt@ # && CoprimeQ[#, 10] &] (* Michael De Vlieger, Dec 11 2015 *)
PROG
(PARI) isok(n) = (n % 2) && (n % 5) && (isprime(n) || (numdiv(n) % 2 == 0)); \\ Michel Marcus, Aug 27 2013
(PARI) is(n)=gcd(n, 10)==1 && !issquare(n) \\ Charles R Greathouse IV, Sep 05 2013
CROSSREFS
Intersection of A000037 and A045572.
Sequence in context: A102213 A276283 A377232 * A310192 A138152 A004139
KEYWORD
nonn,easy
AUTHOR
Eric Desbiaux, Mar 31 2009
EXTENSIONS
New name from Charles R Greathouse IV, Sep 05 2013
STATUS
approved