login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052535 Expansion of (1-x)*(1+x)/(1-x-2*x^2+x^4). 6
1, 1, 2, 4, 7, 14, 26, 50, 95, 181, 345, 657, 1252, 2385, 4544, 8657, 16493, 31422, 59864, 114051, 217286, 413966, 788674, 1502555, 2862617, 5453761, 10390321, 19795288, 37713313, 71850128, 136886433, 260791401, 496850954, 946583628 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) = number of compositions of n with parts in {2,1,3,5,7,9,...}. The generating function follows easily from Theorem 1.1 of the Hoggatt et al. reference. Example: a(4)= 7 because we have 22, 31, 13, 211, 121, 112, and 1111. - Emeric Deutsch, Aug 17 2016.
Diagonal sums of A054142. - Paul Barry, Jan 21 2005
Equals INVERT transform of (1, 1, 1, 0, 1, 0, 1, 0, 1, ...). - Gary W. Adamson, Apr 27 2009
Number of tilings of a 4 X 2n rectangle by 4 X 1 tetrominoes. - M. Poyraz Torcuk, Dec 10 2021
LINKS
V. E. Hoggatt, Jr. and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
Todd Mullen, On Variants of Diffusion, Dalhousie University (Halifax, NS Canada, 2020).
Todd Mullen, Richard Nowakowski, and Danielle Cox, Counting Path Configurations in Parallel Diffusion, arXiv:2010.04750 [math.CO], 2020.
FORMULA
G.f.: (1 - x^2)/(1 - x - 2*x^2 + x^4).
a(n) = a(n-1) + 2*a(n-2) - a(n-4), with a(0)=1, a(1)=1, a(2)=2, a(3)=4.
a(n) = Sum_{alpha = RootOf(1-x-2*x^2+x^4)} (1/283)*(27 + 112*alpha + 9*alpha^2 -48*alpha^3)*alpha^(-n-1).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k, k). - Paul Barry, Jan 21 2005
a(n) = A158943(n) -A158943(n-2). - R. J. Mathar, Jan 13 2023
MAPLE
spec := [S, {S=Sequence(Prod(Z, Union(Z, Sequence(Prod(Z, Z)))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x^2)/(1-x-2x^2+x^4), {x, 0, 40}], x] (* or *)
Table[Length@ Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {___, a_, ___} /; And[EvenQ@ a, a != 2]]], 1], {n, 0, 40}] (* Michael De Vlieger, Aug 17 2016 *)
LinearRecurrence[{1, 2, 0, -1}, {1, 1, 2, 4}, 40] (* Harvey P. Dale, Apr 12 2018 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x^2)/(1-x-2*x^2+x^4)) \\ G. C. Greubel, May 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2)/( 1-x-2*x^2+x^4) )); // G. C. Greubel, May 09 2019
(Sage) ((1-x^2)/(1-x-2*x^2+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
(GAP) a:=[1, 1, 2, 4];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-4]; od; a; # G. C. Greubel, May 09 2019
CROSSREFS
Cf. A275446.
Bisection of A003269 (odd part),
Sequence in context: A024502 A280254 A280917 * A027988 A238859 A224960
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 21:17 EST 2023. Contains 367502 sequences. (Running on oeis4.)