|
|
A052535
|
|
Expansion of (1-x)*(1+x)/(1-x-2*x^2+x^4).
|
|
6
|
|
|
1, 1, 2, 4, 7, 14, 26, 50, 95, 181, 345, 657, 1252, 2385, 4544, 8657, 16493, 31422, 59864, 114051, 217286, 413966, 788674, 1502555, 2862617, 5453761, 10390321, 19795288, 37713313, 71850128, 136886433, 260791401, 496850954, 946583628
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) = number of compositions of n with parts in {2,1,3,5,7,9,...}. The generating function follows easily from Theorem 1.1 of the Hoggatt et al. reference. Example: a(4)= 7 because we have 22, 31, 13, 211, 121, 112, and 1111. - Emeric Deutsch, Aug 17 2016.
Equals INVERT transform of (1, 1, 1, 0, 1, 0, 1, 0, 1, ...). - Gary W. Adamson, Apr 27 2009
Number of tilings of a 4 X 2n rectangle by 4 X 1 tetrominoes. - M. Poyraz Torcuk, Dec 10 2021
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1 - x^2)/(1 - x - 2*x^2 + x^4).
a(n) = a(n-1) + 2*a(n-2) - a(n-4), with a(0)=1, a(1)=1, a(2)=2, a(3)=4.
a(n) = Sum_{alpha = RootOf(1-x-2*x^2+x^4)} (1/283)*(27 + 112*alpha + 9*alpha^2 -48*alpha^3)*alpha^(-n-1).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k, k). - Paul Barry, Jan 21 2005
|
|
MAPLE
|
spec := [S, {S=Sequence(Prod(Z, Union(Z, Sequence(Prod(Z, Z)))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
|
|
MATHEMATICA
|
CoefficientList[Series[(1-x^2)/(1-x-2x^2+x^4), {x, 0, 40}], x] (* or *)
Table[Length@ Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {___, a_, ___} /; And[EvenQ@ a, a != 2]]], 1], {n, 0, 40}] (* Michael De Vlieger, Aug 17 2016 *)
LinearRecurrence[{1, 2, 0, -1}, {1, 1, 2, 4}, 40] (* Harvey P. Dale, Apr 12 2018 *)
|
|
PROG
|
(PARI) my(x='x+O('x^40)); Vec((1-x^2)/(1-x-2*x^2+x^4)) \\ G. C. Greubel, May 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2)/( 1-x-2*x^2+x^4) )); // G. C. Greubel, May 09 2019
(Sage) ((1-x^2)/(1-x-2*x^2+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
(GAP) a:=[1, 1, 2, 4];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-4]; od; a; # G. C. Greubel, May 09 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|