OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
a(n) ~ c * 2^n, where c = 1/2 - QPochhammer(1/2)/2 = 0.3556059524566987893605501390353846099555440475796571079426294669... - Vaclav Kotesovec, May 01 2014, updated Mar 17 2024
EXAMPLE
There are a(6) = 26 such compositions of 6:
01: [ 1 1 1 1 1 1 ]
02: [ 1 1 1 1 2 ]
03: [ 1 1 1 2 1 ]
04: [ 1 1 1 3 ]
05: [ 1 1 2 1 1 ]
06: [ 1 1 2 2 ]
07: [ 1 1 3 1 ]
08: [ 1 2 1 1 1 ]
09: [ 1 2 1 2 ]
10: [ 1 2 2 1 ]
11: [ 1 2 3 ]
12: [ 2 1 1 1 1 ]
13: [ 2 1 1 2 ]
14: [ 2 1 2 1 ]
15: [ 2 1 3 ]
16: [ 2 2 1 1 ]
17: [ 2 2 2 ]
18: [ 2 3 1 ]
19: [ 3 1 1 1 ]
20: [ 3 1 2 ]
21: [ 3 2 1 ]
22: [ 3 3 ]
23: [ 4 1 1 ]
24: [ 4 2 ]
25: [ 5 1 ]
26: [ 6 ]
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i=0, add(b(n-j, j+1), j=1..n),
add(b(n-j, i+1), j=1..min(n, i))))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 25 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, Sum[b[n-j, j+1], {j, 1, n}], Sum[ b[n-j, i+1], {j, 1, Min[n, i]}]]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Cf. A008930 (subdiagonal compositions), A238875 (subdiagonal partitions), A010054 (subdiagonal partitions into distinct parts).
KEYWORD
nonn
AUTHOR
Joerg Arndt, Mar 24 2014
STATUS
approved