login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280254 Expansion of 1/(1 - Sum_{k>=1} x^p(k)), where p(k) is the number of partitions of k (A000041). 0
1, 1, 2, 4, 7, 14, 26, 50, 95, 180, 343, 652, 1240, 2358, 4484, 8528, 16217, 30840, 58649, 111532, 212101, 403352, 767056, 1458711, 2774031, 5275379, 10032192, 19078230, 36281088, 68995780, 131209344, 249520934, 474514204, 902384123, 1716064761, 3263442024, 6206090863, 11802129022, 22444120219 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of compositions (ordered partitions) into partition numbers.

LINKS

Table of n, a(n) for n=0..38.

Eric Weisstein's World of Mathematics, Partition Function P

Index entries for sequences related to compositions

FORMULA

G.f.: 1/(1 - Sum_{k>=1} x^p(k)).

EXAMPLE

a(4) = 7 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].

MATHEMATICA

nmax = 38; CoefficientList[Series[1/(1 - Sum[x^PartitionsP[k], {k, 1, nmax}]), {x, 0, nmax}], x]

CROSSREFS

Cf. A000041, A007279.

Sequence in context: A017996 A287154 A024502 * A280917 A052535 A027988

Adjacent sequences:  A280251 A280252 A280253 * A280255 A280256 A280257

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Dec 30 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 10:35 EDT 2020. Contains 337380 sequences. (Running on oeis4.)