login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280257 Numbers n such that tau(n^(n-1)) is a prime. 6
2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

tau(n) is the number of positive divisors of n (A000005).

Numbers n such that A000005(A000169(n)) is a prime.

All primes (A000040) are terms. If p is prime then tau(p^(p-1)) = p.

Sequence of composite terms c: 4, 9, 16, 27, 49, 64, 121, 125, 169, 289, ...; (tau(c^(c-1)): 7, 17, 61, 79, 97, 379, 241, 373, 337, 577, ...).

All terms are powers of primes (A000961). - Robert Israel, Mar 07 2017

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) ~ n log n. - Charles R Greathouse IV, Mar 07 2017

EXAMPLE

tau(4^3) = tau(64) = 7 (prime).

MAPLE

N:= 5000: # to get all terms <= N

Primes:= select(isprime, {2, seq(i, i=3..N, 2)}):

sort([seq(seq(`if`(isprime(k*(p^k-1)+1), p^k, NULL), k=1..floor(log[p](N))), p=Primes)]); # Robert Israel, Mar 07 2017

MATHEMATICA

Select[Range@ 230, PrimeQ@ DivisorSigma[0, #^(# - 1)] &] (* Michael De Vlieger, Mar 07 2017 *)

PROG

(MAGMA) [n: n in [1..100] | IsPrime(NumberOfDivisors(n^(n-1)))]

(PARI) isok(n) = isprime(numdiv(n^(n-1))); \\ Michel Marcus, Mar 07 2017

(PARI) list(lim)=my(v=List(primes([2, lim\=1]))); for(e=2, logint(lim, 2), forprime(p=2, sqrtnint(lim, e), if(ispseudoprime(e*(p^e-1)+1), listput(v, p^e)))); Set(v) \\ Charles R Greathouse IV, Mar 07 2017

CROSSREFS

Cf. A000005, A000040, A000169, A000961, A280255, A280256.

Sequence in context: A079852 A084400 A050376 * A050198 A158923 A008740

Adjacent sequences:  A280254 A280255 A280256 * A280258 A280259 A280260

KEYWORD

nonn,easy

AUTHOR

Jaroslav Krizek, Mar 07 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 19:33 EDT 2021. Contains 346359 sequences. (Running on oeis4.)