OFFSET
1,1
COMMENTS
tau(k) is the number of positive divisors of k (A000005).
All primes (A000040) are terms. If p is prime then tau(p^(p-1)) = p.
Sequence of composite terms c: 4, 9, 16, 27, 49, 64, 121, 125, 169, 289, ...; (tau(c^(c-1)): 7, 17, 61, 79, 97, 379, 241, 373, 337, 577, ...).
All terms are powers of primes (A000961). - Robert Israel, Mar 07 2017
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ n log n. - Charles R Greathouse IV, Mar 07 2017
EXAMPLE
tau(4^3) = tau(64) = 7 (prime).
MAPLE
N:= 5000: # to get all terms <= N
Primes:= select(isprime, {2, seq(i, i=3..N, 2)}):
sort([seq(seq(`if`(isprime(k*(p^k-1)+1), p^k, NULL), k=1..floor(log[p](N))), p=Primes)]); # Robert Israel, Mar 07 2017
MATHEMATICA
Select[Range@ 230, PrimeQ@ DivisorSigma[0, #^(# - 1)] &] (* Michael De Vlieger, Mar 07 2017 *)
PROG
(Magma) [n: n in [1..100] | IsPrime(NumberOfDivisors(n^(n-1)))]
(PARI) isok(n) = isprime(numdiv(n^(n-1))); \\ Michel Marcus, Mar 07 2017
(PARI) list(lim)=my(v=List(primes([2, lim\=1]))); for(e=2, logint(lim, 2), forprime(p=2, sqrtnint(lim, e), if(ispseudoprime(e*(p^e-1)+1), listput(v, p^e)))); Set(v) \\ Charles R Greathouse IV, Mar 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaroslav Krizek, Mar 07 2017
STATUS
approved