login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280257
Numbers k such that tau(k^(k-1)) is a prime.
6
2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
OFFSET
1,1
COMMENTS
tau(k) is the number of positive divisors of k (A000005).
Numbers k such that A000005(A000169(k)) is a prime.
All primes (A000040) are terms. If p is prime then tau(p^(p-1)) = p.
Sequence of composite terms c: 4, 9, 16, 27, 49, 64, 121, 125, 169, 289, ...; (tau(c^(c-1)): 7, 17, 61, 79, 97, 379, 241, 373, 337, 577, ...).
All terms are powers of primes (A000961). - Robert Israel, Mar 07 2017
LINKS
FORMULA
a(n) ~ n log n. - Charles R Greathouse IV, Mar 07 2017
EXAMPLE
tau(4^3) = tau(64) = 7 (prime).
MAPLE
N:= 5000: # to get all terms <= N
Primes:= select(isprime, {2, seq(i, i=3..N, 2)}):
sort([seq(seq(`if`(isprime(k*(p^k-1)+1), p^k, NULL), k=1..floor(log[p](N))), p=Primes)]); # Robert Israel, Mar 07 2017
MATHEMATICA
Select[Range@ 230, PrimeQ@ DivisorSigma[0, #^(# - 1)] &] (* Michael De Vlieger, Mar 07 2017 *)
PROG
(Magma) [n: n in [1..100] | IsPrime(NumberOfDivisors(n^(n-1)))]
(PARI) isok(n) = isprime(numdiv(n^(n-1))); \\ Michel Marcus, Mar 07 2017
(PARI) list(lim)=my(v=List(primes([2, lim\=1]))); for(e=2, logint(lim, 2), forprime(p=2, sqrtnint(lim, e), if(ispseudoprime(e*(p^e-1)+1), listput(v, p^e)))); Set(v) \\ Charles R Greathouse IV, Mar 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaroslav Krizek, Mar 07 2017
STATUS
approved