login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280255
Numbers k such that tau(k^(k+1)) is a prime.
3
3, 4, 5, 11, 17, 25, 29, 41, 49, 59, 71, 101, 107, 125, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 343, 347, 419, 431, 461, 521, 529, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319
OFFSET
1,1
COMMENTS
tau(k) is the number of positive divisors of k (A000005).
Numbers k such that A000005(A007778(k)) is a prime.
Lesser of twin primes (A001359) are terms. If p is lesser of twin primes then tau(p^(p+1)) = p + 2 (see A006512).
Sequence of composite terms c: 4, 25, 49, 125, 343, 529, 1369, ...; (tau(c^(c+1)): 11, 53, 101, 379, 1033, 1061, 2741, ...).
Numbers of the form p^k where p is prime and 1 + k * (1 + p^k) is prime. - Robert Israel, Sep 02 2024
LINKS
EXAMPLE
tau(4^5) = tau(1024) = 11 (prime).
MAPLE
N:= 10000: # for terms <= N
P:= select(isprime, [2, seq(i, i=3..N, 2)]):
R:= {}:
for p in P do
Qs:= select(q -> isprime(1 + q + q*p^q), {$1..ilog[p](N)});
R:= R union map(q -> p^q, Qs)
od:
sort(convert(R, list)); # Robert Israel, Sep 02 2024
MATHEMATICA
Select[Range[1319], PrimeQ@DivisorSigma[0, #^(# + 1)] &] (* Giovanni Resta, Mar 07 2017 *)
PROG
(Magma) [n: n in [1..500] | IsPrime(NumberOfDivisors(n^(n+1)))];
(PARI) isok(n) = isprime(numdiv(n^(n+1))); \\ Michel Marcus, Mar 07 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 07 2017
STATUS
approved