login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280258
a(n) = Sum_{d|n} pxi(d), where pxi(m) is the product of totatives of m (A001783).
3
1, 2, 3, 5, 25, 9, 721, 110, 2243, 215, 3628801, 397, 479001601, 20027, 896923, 2027135, 20922789888001, 87334, 6402373705728001, 8729939, 47297536723, 1253566127, 1124000727777607680001, 37182647, 41363226782215962649, 608621584727, 1524503639859202243
OFFSET
1,2
COMMENTS
Conjecture: a(n) is odd for numbers in A183300; a(n) is even for numbers in A001105 (2*n^2).
Numbers n such that a(n) is prime: 2, 3, 4, 9, 12, 20, 27, ... (there are no other terms < 742). Corresponding values of primes: 2, 3, 5, 2243, 397, 8729939, 1524503639859202243, ...
LINKS
FORMULA
a(n) = Sum_{d|n} A001783(d).
EXAMPLE
For n=6; sets of totatives of divisors of 6: {1}, {1}, {1, 2}, {1, 5}; a(6) = 1+1+(1*2)+(1*5) = 9.
MATHEMATICA
Table[Sum[Times @@ Select[Range@ d, CoprimeQ[#, d] &], {d, Divisors@ n}], {n, 27}] (* Michael De Vlieger, Jan 01 2017 *)
PROG
(Magma) [&+[&*[h: h in [1..d] | GCD(h, d) eq 1]: d in Divisors(n)]: n in [1..100]]
(PARI) a(n) = sumdiv(n, d, prod(k=1, d, if (gcd(k, d)==1, k, 1))); \\ Michel Marcus, Jan 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 01 2017
STATUS
approved