Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 08 2022 08:46:18
%S 1,2,3,5,25,9,721,110,2243,215,3628801,397,479001601,20027,896923,
%T 2027135,20922789888001,87334,6402373705728001,8729939,47297536723,
%U 1253566127,1124000727777607680001,37182647,41363226782215962649,608621584727,1524503639859202243
%N a(n) = Sum_{d|n} pxi(d), where pxi(m) is the product of totatives of m (A001783).
%C Conjecture: a(n) is odd for numbers in A183300; a(n) is even for numbers in A001105 (2*n^2).
%C Numbers n such that a(n) is prime: 2, 3, 4, 9, 12, 20, 27, ... (there are no other terms < 742). Corresponding values of primes: 2, 3, 5, 2243, 397, 8729939, 1524503639859202243, ...
%H Robert G. Wilson v, <a href="/A280258/b280258.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = Sum_{d|n} A001783(d).
%e For n=6; sets of totatives of divisors of 6: {1}, {1}, {1, 2}, {1, 5}; a(6) = 1+1+(1*2)+(1*5) = 9.
%t Table[Sum[Times @@ Select[Range@ d, CoprimeQ[#, d] &], {d, Divisors@ n}], {n, 27}] (* _Michael De Vlieger_, Jan 01 2017 *)
%o (Magma) [&+[&*[h: h in [1..d] | GCD(h,d) eq 1]: d in Divisors(n)]: n in [1..100]]
%o (PARI) a(n) = sumdiv(n, d, prod(k=1, d, if (gcd(k,d)==1, k, 1))); \\ _Michel Marcus_, Jan 02 2017
%Y Cf. A001783, A001105, A183300, A280259, A280260.
%K nonn
%O 1,2
%A _Jaroslav Krizek_, Jan 01 2017