OFFSET
1,2
COMMENTS
Complement of A001105.
Integers whose number of even divisors (A183063) is even (for a proof, see A001105, the complement of this sequence), hence odd numbers (A005408) are a subsequence. - Bernard Schott, Sep 15 2021
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = n + floor(sqrt(n/2) + 1/4). - Ridouane Oudra, Jan 26 2023
EXAMPLE
10 is in the sequence since 2*2^2=8 < 10 < 2*3^2=18.
MAPLE
A183300:=n->if type(sqrt(2*n)/2, integer) then NULL; else n; fi; seq(A183300(n), n=1..100); # Wesley Ivan Hurt, Dec 17 2013
MATHEMATICA
a = 2; b = 0;
F[n_] := a*n^2 + b*n;
R[n_] := (n/a + ((b - 1)/(2a))^2)^(1/2);
G[n_] := n - 1 + Ceiling[R[n] - (b - 1)/(2a)];
Table[F[n], {n, 60}]
Table[G[n], {n, 100}] (* Clark Kimberling *)
r[n_] := Reduce[n == 2*k^2, k, Integers]; Select[Range[100], r[#] === False &] (* Jean-François Alcover, Dec 17 2013 *)
max = 100; Complement[Range[max], 2 Range[Ceiling[Sqrt[max/2]]]^2] (* Alonso del Arte, Dec 17 2013 *)
Module[{nn=10, f}, Complement[Range[2nn^2], 2Range[nn]^2]] (* Harvey P. Dale, Sep 06 2023 *)
PROG
(Magma) [n: n in [0..100] | not IsSquare(n/2)]; // Bruno Berselli, Dec 17 2013
(PARI) is(n)=!issquare(n/2) \\ Charles R Greathouse IV, Sep 02 2015
(PARI) a(n)=my(k=sqrtint(n\2)+n); if(k-sqrtint(k\2)<n, k+1, k) \\ Charles R Greathouse IV, Sep 02 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 03 2011
EXTENSIONS
Name clarified by Wesley Ivan Hurt, Dec 17 2013
STATUS
approved