login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008740
Molien series for 3-dimensional group [2+,n] = 2*(n/2).
3
1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 19, 22, 25, 28, 32, 36, 40, 44, 49, 54, 59, 64, 69, 75, 81, 87, 93, 100, 107, 114, 121, 128, 136, 144, 152, 160, 169, 178, 187, 196, 205, 215, 225, 235, 245, 256, 267, 278, 289, 300, 312, 324, 336, 348, 361, 374, 387, 400, 413, 427, 441, 455, 469, 484
OFFSET
0,2
FORMULA
G.f.: (1+x^5)/((1-x)^2*(1-x^9)).
Nearest integer to (n+3)^2/9. [Corrected by Gerald Hillier, Dec 24 2017]
a(n) = a(n-4) + n. - Paul Barry, Jul 14 2004
a(n) = 2*a(n-1) - a(n-2) + a(n-9) - 2*a(n-10) + a(n-11).
a(n) = floor((n^2 + 6*n + 12)/9). - Tani Akinari, Aug 19 2013
MATHEMATICA
CoefficientList[Series[(1+x^5)/((1-x)^2(1-x^9)), {x, 0, 70}], x] (* Harvey P. Dale, Aug 27 2011 *)
Floor[((Range[0, 70]+3)^2 + 3)/9] (* G. C. Greubel, Aug 03 2019 *)
PROG
(PARI) vector(70, n, n--; ((n+3)^2+3)\9) \\ G. C. Greubel, Aug 03 2019
(Magma) [Floor((n+3)^2+3)/9: n in [0..70]]; // G. C. Greubel, Aug 03 2019
(Sage) [floor((n+3)^2+3)/9 for n in (0..70)] # G. C. Greubel, Aug 03 2019
(GAP) List([0..70], n-> Int(((n+3)^2+3)/9)); # G. C. Greubel, Aug 03 2019
CROSSREFS
Sequence in context: A280257 A050198 A158923 * A089651 A063487 A253063
KEYWORD
nonn,easy
STATUS
approved