login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008739
Molien series for 3-dimensional group [2+,n] = 2*(n/2).
1
1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 22, 26, 30, 34, 39, 44, 49, 54, 60, 66, 72, 79, 86, 93, 100, 108, 116, 124, 133, 142, 151, 160, 170, 180, 190, 201, 212, 223, 234, 246, 258, 270, 283, 296, 309, 322, 336, 350, 364, 379, 394, 409, 424, 440, 456, 472, 489
OFFSET
0,2
FORMULA
G.f.: (1+x^4)/((1-x)^2*(1-x^7)).
MATHEMATICA
LinearRecurrence[{2, -1, 0, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 6, 8, 10, 13, 16}, 50] (* Harvey P. Dale, May 05 2017 *)
CoefficientList[Series[(1+x^4)/(1-x)^2/(1-x^7), {x, 0, 50}], x] (* Vincenzo Librandi, May 06 2017 *)
PROG
(Magma) I:=[1, 2, 3, 4, 6, 8, 10, 13, 16]; [n le 9 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-7)-2*Self(n-8)+Self(n-9): n in [1..50]]; // Vincenzo Librandi, May 06 2017
(PARI) my(x='x+O('x^50)); Vec((1+x^4)/((1-x)^2*(1-x^7))) \\ G. C. Greubel, Aug 03 2019
(Sage) ((1+x^4)/((1-x)^2*(1-x^7))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
(GAP) a:=[1, 2, 3, 4, 6, 8, 10, 13, 16];; for n in [10..50] do a[n]:=2*a[n-1] -a[n-2]+a[n-7]-2*a[n-8]+a[n-9]; od; a; # G. C. Greubel, Aug 03 2019
CROSSREFS
Sequence in context: A184109 A214780 A024174 * A280706 A025695 A025694
KEYWORD
nonn
STATUS
approved