login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214780
a(1) = 2; a(n+1) = round(a(n)^(1 + 1/a(n))).
1
2, 3, 4, 6, 8, 10, 13, 16, 19, 22, 25, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 236, 242, 248, 254, 260, 266
OFFSET
1,1
COMMENTS
Let b(1)= 2, b(n+1)= b(n)^(1 + 1/b(n)) for n > 0 and c(n) = round(b(n)). Let d(n) = a(n) - c(n). The d(n) sequence has a very interesting course: at the beginning of zero and the long cycles of positive and negative terms.
Firoozbakht conjecture: prime(n+1) < prime(n)^(1+1/n) for all n.
Let p(n+1) = p(n)^(1 + y(n)/p(n)). Conjecture: y(n) = O(log p(n)). The average value of y(n) is 1.
FORMULA
a(n+1) = a(n) + log a(n) + O(1). a(n) ~ n log n. - Charles R Greathouse IV, Jul 30 2012
a(n) = n log n + n log log n + O(n) so a(n) = prime(n) + O(n). - Thomas Ordowski, May 07 2013
PROG
(PARI) a=[2]; for(n=2, 100, a=concat(a, round(a[n-1]^(1+1/a[n-1])))); a \\ Colin Barker, Jul 22 2014
CROSSREFS
Cf. A000040.
Sequence in context: A096061 A100919 A184109 * A024174 A008739 A280706
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Jul 28 2012
STATUS
approved