login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096061
a(n) = floor((Sum of the first n natural numbers)/(Sum of the first n terms of the harmonic series)).
1
1, 2, 3, 4, 6, 8, 10, 13, 15, 18, 21, 25, 28, 32, 36, 40, 44, 48, 53, 58, 63, 68, 73, 79, 85, 91, 97, 103, 109, 116, 123, 130, 137, 144, 151, 159, 167, 175, 183, 191, 200, 208, 217, 226, 235, 244, 254, 263, 273, 283, 293, 303, 314, 324, 335, 346, 357, 368, 379
OFFSET
1,2
LINKS
FORMULA
The sequence has the asymptotic behavior n^2/log(n). - Stefan Steinerberger, Mar 18 2006
(n*(n+1))/(2*log(n)) >= a(n) >= (n*(n+1))/(2*log(n)+2). - Stefan Steinerberger, Mar 18 2006
EXAMPLE
a(5) = floor((1 + 2 + 3 + 4 + 5)/(1 + 1/2 + 1/3 + 1/4 + 1/5)) = floor(15/(137/60)) = floor(900/137) = 6.
MAPLE
a:= n-> floor(sum(i, i=1..n)/sum(1/i, i=1..n)):
seq(a(n), n=1..60); # Alois P. Heinz, Aug 26 2015
MATHEMATICA
Table[Floor[(n*(n + 1))/(2*Sum[1/i, {i, 1, n}])], {n, 1, 55}] (* Stefan Steinerberger, Mar 18 2006 *)
CROSSREFS
Sequence in context: A177907 A083006 A352929 * A100919 A184109 A214780
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 18 2004
EXTENSIONS
More terms from Stefan Steinerberger, Mar 18 2006
Offset corrected by Jon E. Schoenfield, Aug 26 2015
STATUS
approved