login
A083006
Numbers k such that Sum_{j=0..k-1} Bernoulli(j)*binomial(k,j)^2 is an integer.
0
0, 1, 2, 3, 4, 6, 8, 10, 12, 24, 28, 30, 36, 40, 60, 108, 120
OFFSET
1,3
COMMENTS
Next term, if it exists, is > 2500.
No further terms up to 5000. - Harvey P. Dale, Nov 14 2011
No further terms up to 10000. - Vaclav Kotesovec, Jun 07 2019
MAPLE
p:=proc(n) if type(add(bernoulli(k)*binomial(n, k)^2, k=0..n-1), integer) then n else fi end: seq(p(n), n=0..200); # Emeric Deutsch, Mar 19 2005
MATHEMATICA
Select[Range[0, 150], IntegerQ[Sum[BernoulliB[k]Binomial[#, k]^2, {k, 0, #-1}]]&] (* Harvey P. Dale, Nov 14 2011 *)
PROG
(PARI) isok(k) = denominator(sum(j=0, k-1, bernfrac(j)*binomial(k, j)^2)) == 1; \\ Michel Marcus, Feb 15 2021
CROSSREFS
Sequence in context: A061953 A029517 A177907 * A352929 A096061 A100919
KEYWORD
more,nonn
AUTHOR
Benoit Cloitre, May 31 2003
STATUS
approved