login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083009
a(n) = Sum_{k=0,n-1} 5^k*B(k)*binomial(n,k) where B(k) is the k-th Bernoulli number.
9
0, 1, -4, 6, 16, -74, -264, 1946, 9056, -88434, -512024, 6154786, 42716496, -607884394, -4920817384, 80834386026, 747784582336, -13923204233954, -144898927180344, 3015393801263666, 34867899296006576, -801997872697905114, -10201104981227536904, 256982712667627683706
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 5x/(1+exp(x)+exp(2x)+exp(3x)+exp(4x)). - Benoit Cloitre, Oct 26 2012 (following I. Gessel).
MATHEMATICA
Range[0, 15]! CoefficientList[ Series[ 5x/(1 + Exp[x] + Exp[ 2x] + Exp[ 3x] + Exp[ 4x]), {x, 0, 15}], x] (* Robert G. Wilson v, Oct 26 2012 *)
Table[Sum[5^k*BernoulliB[k] Binomial[n, k], {k, 0, n - 1}], {n, 0, 23}] (* Michael De Vlieger, Sep 28 2016 *)
PROG
(PARI) a(n)=sum(k=0, n-1, 5^k*binomial(n, k)*bernfrac(k))
KEYWORD
sign
AUTHOR
Benoit Cloitre, May 31 2003
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Sep 28 2016
STATUS
approved