OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..452
FORMULA
E.g.f.: 6x(exp(x)-1)/(exp(6x)-1). - Michael Somos, Aug 02 2006
a(n) = Sum_{k=0..n-1} 6^k*B(k)*C(n,k) where B(k) is the k-th Bernoulli number and C(n,k) = binomial(n,k).
MATHEMATICA
Range[0, 15]! CoefficientList[ Series[ 6x/(1 + Exp[x] + Exp[ 2x] + Exp[ 3x] + Exp[ 4x] + Exp[ 5x]), {x, 0, 15}], x] (* Robert G. Wilson v, Oct 26 2012 *)
PROG
(PARI) a(n)=sum(k=0, n-1, 6^k*binomial(n, k)*bernfrac(k))
(PARI) {a(n)=if(n<1, 0, n!*polcoeff( 6*x*(exp(x+x*O(x^n))-1)/(exp(6*x +x*O(x^n))-1), n))} /* Michael Somos, Aug 02 2006 */
CROSSREFS
KEYWORD
sign
AUTHOR
Benoit Cloitre, May 31 2003
STATUS
approved