login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083007 a(n) = Sum_{k=0..n-1} 3^k*B(k)*C(n,k) where B(k) is the k-th Bernoulli number and C(n,k)=binomial(n,k). 11
0, 1, -2, 1, 4, -5, -26, 49, 328, -809, -6710, 20317, 201772, -722813, -8370194, 34607305, 457941136, -2145998417, -31945440878, 167317266613, 2767413231220, -16020403322021, -291473080313162, 1848020950359841, 36679231132772824, -252778977216700025, -5435210060467425446 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..510

G. Almkvist and A. Meurman, Values of Bernoulli polynomials and Hurwitz's Zeta function at rational points, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), 104-109

B. Sury, The value of Bernoulli Polynomials at rational numbers, Bull. London Math. Soc. 25 (1993), 327-29.

FORMULA

E.g.f.: 3x/(1+e^x+e^(2x)). - Ira M. Gessel, Jan 28 2012

From Peter Bala, Mar 01 2015: (Start)

a(2*n+1) = (-1)^(n+1)*A002111(n) for n >= 1.

a(n) = 3^n * ( B(n,1/3) - B(n,0) ), where B(n,x) denotes the n-th Bernoulli polynomial. More generally, Almkvist and Meurman show that k^n * ( B(n, 1/k) - B(n, 0) ) is an integer sequence for k = 2,3,4,..., which proves the integrality of A083008 through A083014.

a(0) = 1 and for n >= 1, a(n) = 1 - 1/(n + 1)*Sum_{k = 1..n-1} 3^(n-k)*binomial(n+1,k)*a(k) (Sury, Section 1). (End)

MATHEMATICA

Range[0, 15]! CoefficientList[ Series[ 3x/(1 + Exp[x] + Exp[ 2x]), {x, 0, 15}], x] (* Robert G. Wilson v, Oct 26 2012 *)

Table[Sum[3^k BernoulliB[k]Binomial[n, k], {k, 0, n-1}], {n, 0, 30}] (* Harvey P. Dale, May 26 2014 *)

PROG

(PARI) a(n)=sum(k=0, n-1, 3^k*binomial(n, k)*bernfrac(k))

CROSSREFS

Cf. A001469.

Cf. A036968, A083008, A083009, A083010, A083011, A083012, A083013, A083014.

Cf. A002111.

Sequence in context: A209337 A243004 A137424 * A309845 A002987 A210958

Adjacent sequences:  A083004 A083005 A083006 * A083008 A083009 A083010

KEYWORD

sign,easy

AUTHOR

Benoit Cloitre, May 31 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 21:51 EDT 2022. Contains 356949 sequences. (Running on oeis4.)