login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096062
a(1) = a(2) = 1; for n > 2, if a(n-2) + a(n-1) > n then a(n) = abs(a(n-2) - a(n-1)) else a(n) = a(n-2) + a(n-1).
2
1, 1, 2, 3, 5, 2, 7, 5, 2, 7, 9, 2, 11, 13, 2, 15, 17, 2, 19, 17, 2, 19, 21, 2, 23, 25, 2, 27, 29, 2, 31, 29, 2, 31, 33, 2, 35, 37, 2, 39, 41, 2, 43, 41, 2, 43, 45, 2, 47, 49, 2, 51, 53, 2, 55, 53, 2, 55, 57, 2, 59, 61, 2, 63, 65, 2, 67, 65, 2, 67, 69, 2, 71, 73, 2, 75, 77, 2, 79, 77, 2
OFFSET
1,3
COMMENTS
For n > 1: a(n) = 2 if n mod 12 = {0,3,6,9}, a(n) = n if n mod 12 = {5,7}, a(n) = n-1 if n mod 12 = {2,4}, a(n) = n-2 if n mod 12 = {1,11}, a(n) = n-3 if n mod 12 = {8,10}. - Klaus Brockhaus, Jun 19 2004
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,1,-1,-1,1,1,-1,-1,1,1,0,-1).
FORMULA
G.f.: x*(2*x^13 -2*x^12 +x^11 +5*x^10 -x^9 -x^8 +x^7 +x^6 -x^5 +3*x^4 +x^3 +x^2 +x +1) / ((x -1)^2*(x +1)*(x^2 -x +1)*(x^2 +x +1)^2*(x^4 -x^2 +1)). - Colin Barker, Mar 12 2015
EXAMPLE
a(8) + a(9) = 5 + 2 = 7 < 10, so a(10) = 7.
a(16) + a(17) = 15 + 17 = 32 > 18, so a(18) = abs(15 - 17) = 2.
MATHEMATICA
nxt[{n_, a_, b_}]:={n+1, b, If[a+b>n+1, Abs[a-b], a+b]}; Transpose[ NestList[ nxt, {2, 1, 1}, 90]][[2]] (* Harvey P. Dale, Sep 22 2014 *)
PROG
(PARI) m=81; print1(a=1, ", ", b=1, ", "); for(n=3, m, print1(c=if(a+b>n, abs(a-b), a+b), ", "); a=b; b=c)
(PARI) Vec(x*(2*x^13 -2*x^12 +x^11 +5*x^10 -x^9 -x^8 +x^7 +x^6 -x^5 +3*x^4 +x^3 +x^2 +x +1) / ((x -1)^2*(x +1)*(x^2 -x +1)*(x^2 +x +1)^2*(x^4 -x^2 +1)) + O(x^100)) \\ Colin Barker, Mar 12 2015
CROSSREFS
Sequence in context: A084346 A165911 A354764 * A176195 A231233 A174562
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jun 18 2004
EXTENSIONS
Edited, corrected and extended by Klaus Brockhaus, Jun 19 2004
STATUS
approved