login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236582
The number of tilings of an 8 X n floor with 1 X 4 tetrominoes.
6
1, 1, 1, 1, 7, 15, 25, 37, 100, 229, 454, 811, 1732, 3777, 7858, 15339, 31273, 65536, 136600, 276535, 562728, 1159942, 2400783, 4918159, 10052140, 20627526, 42480474, 87254743, 178855138, 366854368
OFFSET
0,5
COMMENTS
Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
LINKS
R. J. Mathar, Paving rectangular regions..., arXiv:1311.6135 [math.CO], 2013, Table 37.
FORMULA
G.f.: p(x)/q(x) with polynomials p and q defined in the Maple code.
MAPLE
p := (1-x)^3*(x+1)^3*(x^2+1)^3*(x^6-x^4-x^3-x^2+1) ;
q := -x^2 -13*x^10 -5*x^18 +8*x^6 -x -x^20 -9*x^4 +16*x^8 -13*x^12 -2*x^19 +1 +10*x^14 +5*x^7 +6*x^15 -6*x^11 +x^22 +6*x^16 +x^17 +2*x^5 -2*x^13 ;
taylor(p/q, x=0, 30) ;
gfun[seriestolist](%) ;
CROSSREFS
Cf. A003269 (4 X n floor), A236579 - A236581.
Column k=4 of A250662.
Cf. A251074.
Sequence in context: A211430 A082111 A323483 * A268662 A297954 A298577
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 29 2014
STATUS
approved