|
|
A268662
|
|
Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 5^(2^m) + 1 for some m.
|
|
10
|
|
|
7, 15, 25, 39, 55, 75, 85, 127, 1947, 3313, 13165, 23473, 125413, 1282755, 1777515
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Wilfrid Keller, private communication, 2008.
|
|
LINKS
|
Table of n, a(n) for n=1..15.
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=5)
OEIS Wiki, Generalized Fermat numbers
|
|
CROSSREFS
|
Cf. A199591, A268661, A268663, A226366, A268664, A268657, A268658, A204620, A268659, A268660. Subsequence of A002254.
Sequence in context: A082111 A323483 A236582 * A297954 A298577 A299569
Adjacent sequences: A268659 A268660 A268661 * A268663 A268664 A268665
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Arkadiusz Wesolowski, Feb 10 2016
|
|
STATUS
|
approved
|
|
|
|