login
A268657
Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.
11
6, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 408, 438, 534, 2208, 3168, 3189, 3912, 34350, 42294, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346
OFFSET
1,1
REFERENCES
Wilfrid Keller, private communication, 2008.
LINKS
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..41
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=3)
PROG
(PARI) for(k=1, +oo, p=3*2^k+1; if(ispseudoprime(p), t=znorder(Mod(3, p)); bitand(t, t-1)==0&&print1(k, ", "))) \\ Jeppe Stig Nielsen, Oct 30 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved