login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268657
Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.
11
6, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 408, 438, 534, 2208, 3168, 3189, 3912, 34350, 42294, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346
OFFSET
1,1
REFERENCES
Wilfrid Keller, private communication, 2008.
LINKS
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..41
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=3)
PROG
(PARI) for(k=1, +oo, p=3*2^k+1; if(ispseudoprime(p), t=znorder(Mod(3, p)); bitand(t, t-1)==0&&print1(k, ", "))) \\ Jeppe Stig Nielsen, Oct 30 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved