login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268655
G.f. A(x) satisfies: A( A(x)^2 - A(x)^3 ) = x*A(x).
2
1, 1, 1, 2, 6, 17, 45, 123, 356, 1061, 3193, 9691, 29741, 92228, 288331, 907316, 2871818, 9138352, 29217870, 93813839, 302367222, 977913351, 3172727729, 10323213290, 33677758165, 110135406578, 360982631871, 1185632194394, 3901702645568, 12862978506084, 42477650804971, 140496123308659, 465383254510707, 1543693890316144
OFFSET
1,4
COMMENTS
Compare g.f. to: C( C(x)^2 - C(x)^4 ) = C(x)^2 and C( C(x) - C(x)^2 ) = C(x) where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
G.f. A(x) satisfies: A( A(x^2-x^3)/x ) = x.
a(n) ~ c * d^n / n^(3/2), where d = 3.469666051910765293806107674644687565... and c = 0.1297182904218030477707168121291985... . - Vaclav Kotesovec, Apr 01 2016
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 17*x^6 + 45*x^7 + 123*x^8 + 356*x^9 + 1061*x^10 + 3193*x^11 + 9691*x^12 + 29741*x^13 + 92228*x^14 + 288331*x^15 +...
such that A( A(x)^2 - A(x)^3 ) = x*A(x).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 17*x^6 + 50*x^7 + 140*x^8 + 394*x^9 + 1152*x^10 + 3464*x^11 + 10541*x^12 + 32320*x^13 + 99973*x^14 +...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 36*x^7 + 108*x^8 + 316*x^9 + 918*x^10 + 2727*x^11 + 8291*x^12 + 25521*x^13 + 79110*x^14 + 246942*x^15 +...
A(x)^2 - A(x)^3 = x^2 + x^3 + 4*x^6 + 14*x^7 + 32*x^8 + 78*x^9 + 234*x^10 + 737*x^11 + 2250*x^12 + 6799*x^13 + 20863*x^14 + 65056*x^15 +...
The series reversion of g.f. A(x) equals A(x^2-x^3)/x, which begins:
A(x^2-x^3)/x = x - x^2 + x^3 - 2*x^4 + 2*x^5 - 3*x^6 + 5*x^7 - 9*x^8 + 18*x^9 - 38*x^10 + 79*x^11 - 162*x^12 + 330*x^13 - 661*x^14 + 1323*x^15 - 2661*x^16 + 5392*x^17 - 11037*x^18 + 22802*x^19 - 47447*x^20 + 99238*x^21 - 208283*x^22 +...
PROG
(PARI) /* From definition A( A(x)^2 - A(x)^3 ) = x*A(x) */
{a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); G=x*Ser(A); A[#A] = -Vec(subst(G, x, G^2 - G^3 ))[#A] ); A[n]}
for(n=1, 40, print1(a(n), ", "))
(PARI) /* Using Series Reversion of A(x^2-x^3)/x */
{a(n) = my(A=x); for(i=1, n, A = serreverse( subst(A, x, x^2 - x^3 +x^2*O(x^n))/x) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A065068 A109961 A288029 * A350431 A316591 A222115
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 01 2016
STATUS
approved