login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288029
Number of minimal edge covers in the ladder graph P_2 X P_n.
3
1, 2, 6, 17, 45, 120, 324, 873, 2349, 6322, 17018, 45809, 123305, 331904, 893400, 2404801, 6473097, 17423890, 46900574, 126244129, 339816309, 914696984, 2462126012, 6627401865, 17839239445, 48018585634, 129253524146, 347916817697, 936501444241, 2520817938240
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Ladder Graph
Eric Weisstein's World of Mathematics, Edge Cover
Eric Weisstein's World of Mathematics, Minimal Edge Cover
FORMULA
a(n) = 2*a(n-1)+a(n-2)+2*a(n-3)+a(n-4)-a(n-6) for n>6.
G.f.: x*(1+x^2+x^3-x^5)/((1+x^2)*(1-2*x-2*x^2+x^4)).
MATHEMATICA
Table[(RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, 94 #^n + 33 #^(n + 1) - 7 #^(n + 2) + 8 #^(n + 3) &] + 182 (2 Cos[n Pi/2] + Sin[n Pi/2]))/910, {n, 20}] (* Eric W. Weisstein, Aug 03 2017 *)
LinearRecurrence[{2, 1, 2, 1, 0, -1}, {1, 2, 6, 17, 45, 120}, 20] (* Eric W. Weisstein, Aug 03 2017 *)
CoefficientList[Series[(1 + x^2 + x^3 - x^5)/(1 - 2 x - x^2 - 2 x^3 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 03 2017 *)
PROG
(PARI)
Vec((1+x^2+x^3-x^5)/((1+x^2)*(1-2*x-2*x^2+x^4))+O(x^20))
CROSSREFS
Row 2 of A288025.
Sequence in context: A020963 A065068 A109961 * A268655 A350431 A316591
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jun 04 2017
STATUS
approved