login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350431
G.f. A(x) satisfies: A(x*R(x)) = x^2 + x^3 where A(R(x)) = x.
6
1, -1, 1, -2, 6, -17, 45, -123, 360, -1085, 3271, -9905, 30417, -94646, 296783, -935520, 2965416, -9453976, 30290553, -97451634, 314677936, -1019627874, 3314384312, -10804817731, 35315932902, -115711014523, 379974811324, -1250375212010, 4122548894262
OFFSET
1,4
FORMULA
G.f.: A(x) = Series_Reversion( Product_{n>=0} F(n) ), where F(0) = x, F(1) = 1+x, and F(n+1) = 1 + (F(n) - 1)^2 * F(n) for n > 0.
EXAMPLE
G.f.: A(x) = x - x^2 + x^3 - 2*x^4 + 6*x^5 - 17*x^6 + 45*x^7 - 123*x^8 + 360*x^9 - 1085*x^10 + 3271*x^11 - 9905*x^12 + ...
Let R(x) be the series reversion of A(x),
R(x) = x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 5*x^7 + 9*x^8 + 14*x^9 + 18*x^10 + 25*x^11 + 38*x^12 + ... + A350432(n)*x^n + ...
then R(x) and g.f. A(x) satisfy:
(1) A(R(x)) = x,
(2) A(x*R(x)) = x^2 + x^3.
GENERATING METHOD.
Define F(n), a polynomial in x of order 3^(n-1), by the following recurrence:
F(0) = x,
F(1) = (1 + x),
F(2) = (1 + x^2 * (1+x)),
F(3) = (1 + x^4 * (1+x)^2 * F(2)),
F(4) = (1 + x^8 * (1+x)^4 * F(2)^2 * F(3)),
F(5) = (1 + x^16 * (1+x)^8 * F(2)^4 * F(3)^2 * F(4)),
...
F(n+1) = 1 + (F(n) - 1)^2 * F(n)
...
Then the series reversion R(x) equals the infinite product:
R(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...
that is,
R(x) = x * (1+x) * (1 + x^2*(1+x)) * (1 + x^4*(1+x)^2*(1 + x^2*(1+x))) * (1 + x^8*(1+x)^4*(1 + x^2*(1+x))^2*(1 + x^4*(1+x)^2*(1 + x^2*(1+x)))) * ...
PROG
(PARI) /* Using Functional Equation in Definition */
{a(n) = my(A=[1, -1], B); for(i=1, n, A = concat(A, 0);
R = serreverse(x*Ser(A));
A[#A] = -polcoeff( x^2 + x^3 - subst(x*Ser(A), x, x*R), #A+1) ); H=A; A[n]}
for(n=1, 30, print1(a(n), ", "))
(PARI) /* Using Infinite Product Formula for Series Reversion */
{F(n) = my(G=x); if(n==0, G=x, if(n==1, G=1+x, G = 1 + (F(n-1) - 1)^2 * F(n-1) )); G}
{a(n) = my(A, R = prod(k=0, #binary(n), F(k) +x*O(x^n)));
A = serreverse(R); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A350432 (inverse), A273162.
Sequence in context: A109961 A288029 A268655 * A316591 A222115 A190050
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 30 2021
STATUS
approved