login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350432
G.f. A(x) satisfies: A(x) = A(x^2 + x^3) / x.
9
1, 1, 1, 2, 2, 3, 5, 9, 14, 18, 25, 38, 60, 97, 159, 265, 444, 735, 1187, 1865, 2851, 4271, 6378, 9621, 14724, 22864, 35947, 57044, 91141, 146384, 236102, 382124, 620298, 1009685, 1647703, 2694709, 4413524, 7232548, 11845740, 19369888, 31590755, 51346902, 83126317
OFFSET
1,4
COMMENTS
The radius of convergence r of the g.f. A(x) is r = (sqrt(5) - 1)/2. - Paul D. Hanna, Jan 26 2024
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A(x) = A(x^2 + x^3) / x.
(2) R(x*A(x)) = x^2 + x^3, where R(A(x)) = x.
(3) A(x) = x * Product_{n>=1} F(n), where F(1) = 1+x, and F(n+1) = 1 + (F(n) - 1)^2 * F(n) for n >= 1.
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 5*x^7 + 9*x^8 + 14*x^9 + 18*x^10 + 25*x^11 + 38*x^12 + 60*x^13 + ...
Let R(x) be the series reversion of A(x),
R(x) = x - x^2 + x^3 - 2*x^4 + 6*x^5 - 17*x^6 + 45*x^7 - 123*x^8 + 360*x^9 - 1085*x^10 + 3271*x^11 - 9905*x^12 + 30417*x^13 + ... + A350431(n)*x^n + ...
then R(x) and g.f. A(x) satisfy:
(1) R(A(x)) = x,
(2) R(x*A(x)) = x^2 + x^3.
GENERATING METHOD.
Define F(n), a polynomial in x of order 3^(n-1), by the following recurrence:
F(1) = (1 + x),
F(2) = (1 + x^2 * (1+x)),
F(3) = (1 + x^4 * (1+x)^2 * F(2)),
F(4) = (1 + x^8 * (1+x)^4 * F(2)^2 * F(3)),
F(5) = (1 + x^16 * (1+x)^8 * F(2)^4 * F(3)^2 * F(4)),
...
F(n+1) = 1 + (F(n) - 1)^2 * F(n)
...
Then the g.f. A(x) equals the infinite product:
A(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...
that is,
A(x) = x * (1+x) * (1 + x^2*(1+x)) * (1 + x^4*(1+x)^2*(1 + x^2*(1+x))) * (1 + x^8*(1+x)^4*(1 + x^2*(1+x))^2*(1 + x^4*(1+x)^2*(1 + x^2*(1+x)))) * ...
PROG
(PARI) /* Using Functional Equation in Definition */
{a(n) = my(A=x); for(i=0, #binary(n),
A = subst(A, x, x^2*(1 + x) +x^2*O(x^n) )/x ); polcoeff(A, n)}
for(n=1, 50, print1(a(n), ", "))
(PARI) /* Using Infinite Product Formula */
{F(n) = my(G=x); if(n==0, G=x, if(n==1, G=1+x, G = 1 + (F(n-1) - 1)^2 * F(n-1) )); G}
{a(n) = my(A = prod(k=0, #binary(n), F(k) +x*O(x^n))); polcoeff(A, n)}
for(n=1, 50, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 30 2021
STATUS
approved