login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = A(x^2 + x^3) / x.
9

%I #13 Jan 26 2024 10:03:04

%S 1,1,1,2,2,3,5,9,14,18,25,38,60,97,159,265,444,735,1187,1865,2851,

%T 4271,6378,9621,14724,22864,35947,57044,91141,146384,236102,382124,

%U 620298,1009685,1647703,2694709,4413524,7232548,11845740,19369888,31590755,51346902,83126317

%N G.f. A(x) satisfies: A(x) = A(x^2 + x^3) / x.

%C The radius of convergence r of the g.f. A(x) is r = (sqrt(5) - 1)/2. - _Paul D. Hanna_, Jan 26 2024

%H Paul D. Hanna, <a href="/A350432/b350432.txt">Table of n, a(n) for n = 1..2050</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:

%F (1) A(x) = A(x^2 + x^3) / x.

%F (2) R(x*A(x)) = x^2 + x^3, where R(A(x)) = x.

%F (3) A(x) = x * Product_{n>=1} F(n), where F(1) = 1+x, and F(n+1) = 1 + (F(n) - 1)^2 * F(n) for n >= 1.

%e G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 5*x^7 + 9*x^8 + 14*x^9 + 18*x^10 + 25*x^11 + 38*x^12 + 60*x^13 + ...

%e Let R(x) be the series reversion of A(x),

%e R(x) = x - x^2 + x^3 - 2*x^4 + 6*x^5 - 17*x^6 + 45*x^7 - 123*x^8 + 360*x^9 - 1085*x^10 + 3271*x^11 - 9905*x^12 + 30417*x^13 + ... + A350431(n)*x^n + ...

%e then R(x) and g.f. A(x) satisfy:

%e (1) R(A(x)) = x,

%e (2) R(x*A(x)) = x^2 + x^3.

%e GENERATING METHOD.

%e Define F(n), a polynomial in x of order 3^(n-1), by the following recurrence:

%e F(1) = (1 + x),

%e F(2) = (1 + x^2 * (1+x)),

%e F(3) = (1 + x^4 * (1+x)^2 * F(2)),

%e F(4) = (1 + x^8 * (1+x)^4 * F(2)^2 * F(3)),

%e F(5) = (1 + x^16 * (1+x)^8 * F(2)^4 * F(3)^2 * F(4)),

%e ...

%e F(n+1) = 1 + (F(n) - 1)^2 * F(n)

%e ...

%e Then the g.f. A(x) equals the infinite product:

%e A(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...

%e that is,

%e A(x) = x * (1+x) * (1 + x^2*(1+x)) * (1 + x^4*(1+x)^2*(1 + x^2*(1+x))) * (1 + x^8*(1+x)^4*(1 + x^2*(1+x))^2*(1 + x^4*(1+x)^2*(1 + x^2*(1+x)))) * ...

%o (PARI) /* Using Functional Equation in Definition */

%o {a(n) = my(A=x); for(i=0,#binary(n),

%o A = subst(A,x, x^2*(1 + x) +x^2*O(x^n) )/x ); polcoeff(A,n)}

%o for(n=1,50,print1(a(n),", "))

%o (PARI) /* Using Infinite Product Formula */

%o {F(n) = my(G=x); if(n==0,G=x, if(n==1,G=1+x, G = 1 + (F(n-1) - 1)^2 * F(n-1) ));G}

%o {a(n) = my(A = prod(k=0,#binary(n), F(k) +x*O(x^n))); polcoeff(A,n)}

%o for(n=1,50,print1(a(n),", "))

%Y Cf. A350431 (inverse), A273162, A350433, A350434.

%Y Cf. A369545, A369546, A369547, A369548, A369549.

%Y Cf. A369552, A369553, A369554, A369555, A369556.

%K nonn

%O 1,4

%A _Paul D. Hanna_, Dec 30 2021