login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141602
Integer part of 2^n/log(2^n).
1
2, 2, 3, 5, 9, 15, 26, 46, 82, 147, 268, 492, 909, 1688, 3151, 5909, 11123, 21010, 39809, 75638, 144073, 275050, 526182, 1008516, 1936352, 3723754, 7171675, 13831089, 26708310, 51636066, 99940774, 193635250, 375535031, 728979766, 1416303547
OFFSET
1,1
COMMENTS
2^n/log(2^n) is an approximation to the number of primes < 2^n.
LINKS
FORMULA
a(n) = A050500(2^n) = floor(2^n*A007525/n) >= A000799(n). - R. J. Mathar, Jan 05 2009
MATHEMATICA
Floor[2^#/Log[2^#]]&/@Range[40] (* Harvey P. Dale, Mar 11 2013 *)
PROG
(PARI) g(n) = for(x=1, n, y=floor(2^x/log(2^x)); print1(y", "))
(PARI) a(n) = 2^n\log(2^n); \\ Michel Marcus, Feb 24 2021
(Magma)
A141602:= func< n | Floor(2^n/(n*Log(2))) >;
[A141602(n): n in [1..40]]; // G. C. Greubel, Sep 21 2024
(SageMath)
def A141602(n): return int(2^n/(n*log(2)))
[A141602(n) for n in range(1, 41)] # G. C. Greubel, Sep 21 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Aug 21 2008
STATUS
approved