Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 21 2024 08:41:20
%S 2,2,3,5,9,15,26,46,82,147,268,492,909,1688,3151,5909,11123,21010,
%T 39809,75638,144073,275050,526182,1008516,1936352,3723754,7171675,
%U 13831089,26708310,51636066,99940774,193635250,375535031,728979766,1416303547
%N Integer part of 2^n/log(2^n).
%C 2^n/log(2^n) is an approximation to the number of primes < 2^n.
%H G. C. Greubel, <a href="/A141602/b141602.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = A050500(2^n) = floor(2^n*A007525/n) >= A000799(n). - _R. J. Mathar_, Jan 05 2009
%t Floor[2^#/Log[2^#]]&/@Range[40] (* _Harvey P. Dale_, Mar 11 2013 *)
%o (PARI) g(n) = for(x=1,n,y=floor(2^x/log(2^x));print1(y","))
%o (PARI) a(n) = 2^n\log(2^n); \\ _Michel Marcus_, Feb 24 2021
%o (Magma)
%o A141602:= func< n | Floor(2^n/(n*Log(2))) >;
%o [A141602(n): n in [1..40]]; // _G. C. Greubel_, Sep 21 2024
%o (SageMath)
%o def A141602(n): return int(2^n/(n*log(2)))
%o [A141602(n) for n in range(1,41)] # _G. C. Greubel_, Sep 21 2024
%Y Cf. A000799, A007525, A050500, A185192.
%K nonn
%O 1,1
%A _Cino Hilliard_, Aug 21 2008