login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141601
Triangle read by rows: T(n, k) = round(f(n)/(f(k)*f(n-k))), where f(n) = n!*binomial(n,2), f(0) = f(1) = 1.
1
1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 8, 36, 8, 1, 1, 8, 33, 33, 8, 1, 1, 9, 38, 33, 38, 9, 1, 1, 10, 44, 41, 41, 44, 10, 1, 1, 11, 52, 52, 54, 52, 52, 11, 1, 1, 12, 62, 67, 76, 76, 67, 62, 12, 1, 1, 12, 72, 86, 105, 113, 105, 86, 72, 12, 1, 1, 13, 84, 108, 144, 169, 169, 144, 108, 84, 13, 1
OFFSET
0,5
FORMULA
T(n, k) = round( f(n)/(f(k)*f(n-k)) ), where f(n) = n*b(n)*f(n-1)/b(n-1), f(0) = f(1) = 1, b(n) = binomial(n, 2), b(0) = b(1) = 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 9, 9, 1;
1, 8, 36, 8, 1;
1, 8, 33, 33, 8, 1;
1, 9, 38, 33, 38, 9, 1;
1, 10, 44, 41, 41, 44, 10, 1;
1, 11, 52, 52, 54, 52, 52, 11, 1;
1, 12, 62, 67, 76, 76, 67, 62, 12, 1;
1, 12, 72, 86, 105, 113, 105, 86, 72, 12, 1;
...
MATHEMATICA
f[n_]:= If[n<2, 1, n!*Binomial[n, 2]];
T[n_, k_]:= Round[f[n]/(f[n-k]*f[k])];
Table[T[n, k], {n, 0, 14}, {k, 0, n}]//Flatten
PROG
(Magma)
f:= func< n | n le 1 select 1 else Factorial(n)*Binomial(n, 2) >;
A141601:= func< n, k | Round(f(n)/(f(k)*f(n-k))) >;
[A141601(n, k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 20 2024
(SageMath)
def f(n): return 1 if (n<2) else factorial(n)*binomial(n, 2)
def A141601(n, k): return round(f(n)/(f(k)*f(n-k)))
flatten([[A141601(n, k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Sep 20 2024
CROSSREFS
Cf. A141600.
Sequence in context: A214506 A246664 A229962 * A108558 A128434 A176417
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
Edited, and new name, by G. C. Greubel, Sep 20 2024
STATUS
approved