login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141605
Triangle read by rows: T(n, k) = A006722(n)/(A006722(k)*A006722(n-k)).
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 2, 5, 5, 5, 5, 2, 1, 1, 2, 3, 9, 9, 9, 3, 2, 1, 1, 3, 5, 8, 23, 23, 8, 5, 3, 1, 1, 3, 8, 15, 25, 75, 25, 15, 8, 3, 1, 1, 6, 18, 47, 84, 140, 140, 84, 47, 18, 6, 1
OFFSET
0,23
FORMULA
T(n, k) = A006722(n)/(A006722(n-k)*A006722(m)).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1;
1, 3, 3, 3, 3, 3, 1;
1, 2, 5, 5, 5, 5, 2, 1;
1, 2, 3, 9, 9, 9, 3, 2, 1;
1, 3, 5, 8, 23, 23, 8, 5, 3, 1;
1, 3, 8, 15, 25, 75, 25, 15, 8, 3, 1;
...
MATHEMATICA
f[n_]:= f[n]= If[n<6, 1, (f[n-1]*f[n-5] +f[n-2]*f[n-4] +f[n-3]^2)/f[n-6]] (*A006722*)
A141605[n_, k_]:= Round[f[n]/(f[k]*f[n-k])];
Table[A141605[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma)
A006722:= [n le 6 select 1 else (Self(n-1)*Self(n-5) + Self(n-2)*Self(n-4) + Self(n-3)^2)/Self(n-6): n in [1..30]];
A141605:= func< n, k | Round(A006722[n+1]/(A006722[k+1]*A006722[n-k+1])) >;
[A141605(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 21 2024
(SageMath)
def f(n): # f = A006722
if n<6: return 1
else: return (f(n-1)*f(n-5) +f(n-2)*f(n-4) +f(n-3)^2)/f(n-6)
def A141605(n, k): return round(f(n)/(f(k)*f(n-k)))
flatten([[A141605(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 21 2024
CROSSREFS
Sequence in context: A177228 A247655 A097675 * A356002 A251551 A073139
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited and new name by G. C. Greubel, Sep 21 2024
STATUS
approved