login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) = A006722(n)/(A006722(k)*A006722(n-k)).
1

%I #18 Sep 22 2024 07:24:19

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,1,1,2,5,5,5,5,

%T 2,1,1,2,3,9,9,9,3,2,1,1,3,5,8,23,23,8,5,3,1,1,3,8,15,25,75,25,15,8,3,

%U 1,1,6,18,47,84,140,140,84,47,18,6,1

%N Triangle read by rows: T(n, k) = A006722(n)/(A006722(k)*A006722(n-k)).

%H G. C. Greubel, <a href="/A141605/b141605.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = A006722(n)/(A006722(n-k)*A006722(m)).

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 1, 1, 1;

%e 1, 1, 1, 1, 1;

%e 1, 1, 1, 1, 1, 1;

%e 1, 3, 3, 3, 3, 3, 1;

%e 1, 2, 5, 5, 5, 5, 2, 1;

%e 1, 2, 3, 9, 9, 9, 3, 2, 1;

%e 1, 3, 5, 8, 23, 23, 8, 5, 3, 1;

%e 1, 3, 8, 15, 25, 75, 25, 15, 8, 3, 1;

%e ...

%t f[n_]:= f[n]= If[n<6, 1, (f[n-1]*f[n-5] +f[n-2]*f[n-4] +f[n-3]^2)/f[n-6]] (*A006722*)

%t A141605[n_, k_]:= Round[f[n]/(f[k]*f[n-k])];

%t Table[A141605[n, k], {n,0,12}, {k,0,n}]//Flatten

%o (Magma)

%o A006722:= [n le 6 select 1 else (Self(n-1)*Self(n-5) + Self(n-2)*Self(n-4) + Self(n-3)^2)/Self(n-6): n in [1..30]];

%o A141605:= func< n, k | Round(A006722[n+1]/(A006722[k+1]*A006722[n-k+1])) >;

%o [A141605(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 21 2024

%o (SageMath)

%o def f(n): # f = A006722

%o if n<6: return 1

%o else: return (f(n-1)*f(n-5) +f(n-2)*f(n-4) +f(n-3)^2)/f(n-6)

%o def A141605(n, k): return round(f(n)/(f(k)*f(n-k)))

%o flatten([[A141605(n, k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Sep 21 2024

%Y Cf. A006722, A141604.

%K nonn,tabl

%O 0,23

%A _Roger L. Bagula_ and _Gary W. Adamson_, Aug 21 2008

%E Edited and new name by _G. C. Greubel_, Sep 21 2024