The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177228 Triangle read by rows: T(n, k) = -binomial(n,k) for 1 <= k <= n-1, otherwise T(n, k) = 3. 3
 3, 3, 3, 3, -2, 3, 3, -3, -3, 3, 3, -4, -6, -4, 3, 3, -5, -10, -10, -5, 3, 3, -6, -15, -20, -15, -6, 3, 3, -7, -21, -35, -35, -21, -7, 3, 3, -8, -28, -56, -70, -56, -28, -8, 3, 3, -9, -36, -84, -126, -126, -84, -36, -9, 3, 3, -10, -45, -120, -210, -252, -210, -120, -45, -10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This triangle may also be constructed in the following way. Let f_{n}(t) = d^n/dt^n (t/(1+t) = (-1)^(n+1)*n!*(1+t)^(-n-1). Then the triangle is given as f_{n}(t)/((1+t)*f_{k}(t)*f_{n-k}(t)) when t = 1/2 (A177227), t = 1/3 (this sequence), and t = 1/4 (A177229). This is the Pascal triangle A007318, with all entries sign-flipped, and 3's inserted at the beginning and end of each row. - R. J. Mathar, Mar 27 2024 LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n, k) = -binomial(n,k) for 1 <= k <= n-1, otherwise T(n, k) = 3. Sum_{k=0..n} T(n, k) = 8 - 2^n, for n >= 1. From G. C. Greubel, Apr 09 2024: (Start) Sum_{k=0..n} (-1)^k*T(n, k) = 4*(1 + (-1)^n) - 5*[n=0]. Sum_{k=0..floor(n/2)} T(n-k,k) = 2*(3+(-1)^n-2*[n=0])-Fibonacci(n+1). Sum_{k=0..floor(n/2)} (-1)^k*T(n-k,k) = 4*(1 + cos(n*Pi/2) - [n=0]) - (2/sqrt(3))*cos((2*n-1)*Pi/6). (End) EXAMPLE Triangle begins: 3; 3, 3; 3, -2, 3; 3, -3, -3, 3; 3, -4, -6, -4, 3; 3, -5, -10, -10, -5, 3; 3, -6, -15, -20, -15, -6, 3; 3, -7, -21, -35, -35, -21, -7, 3; 3, -8, -28, -56, -70, -56, -28, -8, 3; 3, -9, -36, -84, -126, -126, -84, -36, -9, 3; 3, -10, -45, -120, -210, -252, -210, -120, -45, -10, 3; MAPLE f := proc(n, t) if n = 0 then t/(1+t) ; else diff( t/(1+t), t\$n) ; factor(%) ; end if; end proc: A177228 := proc(n, m) f(n, t)/f(m, t)/f(n-m, t) ; %/(1+t) ; subs(t=1/3, %) ; end proc: seq(seq( A177228(n, m), m=0..n), n=0..12) ; # R. J. Mathar, Mar 27 2024 MATHEMATICA T[n_, k_]:= If[k==0 || k==n, 3, -Binomial[n, k]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten PROG (Magma) A177228:= func< n, k | k eq 0 or k eq n select 3 else -Binomial(n, k) >; [A177228(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 09 2024 (SageMath) def A177228(n, k): return 3 if (k==0 or k==n) else -binomial(n, k) flatten([[A177228(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 09 2024 CROSSREFS Cf. A007318, A177227, A177229. Sequence in context: A183051 A031355 A337265 * A247655 A097675 A141605 Adjacent sequences: A177225 A177226 A177227 * A177229 A177230 A177231 KEYWORD sign,tabl,less,easy AUTHOR Roger L. Bagula, May 05 2010 EXTENSIONS Edited by G. C. Greubel, Apr 09 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 06:39 EDT 2024. Contains 373629 sequences. (Running on oeis4.)