The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A369552 Expansion of g.f. A(x) satisfying A(x) = A( x^2*(1+x)^2 ) / x. 7
1, 2, 3, 8, 15, 26, 55, 124, 284, 616, 1264, 2560, 5145, 10334, 21157, 44396, 94918, 205404, 447798, 980176, 2147217, 4692342, 10202201, 22035060, 47259294, 100704188, 213446378, 450615024, 948696951, 1993590770, 4184002679, 8774184964, 18395154470, 38578533020, 80990279326 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The radius of convergence r of the g.f. A(x) solves r*(1+r)^2 = 1 where r = (((29 + sqrt(837))/2)^(1/3) + ((29 - sqrt(837))/2)^(1/3) - 2)/3 = 0.465571231876768...
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A(x) = A( x^2*(1+x)^2 ) / x.
(2) R(x*A(x)) = x^2*(1+x)^2, where R(A(x)) = x.
(3) A(x) = x * Product_{n>=1} F(n)^2, where F(1) = 1+x, and F(n+1) = 1 + (F(n) - 1)^2 * F(n)^2 for n >= 1.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 3*x^3 + 8*x^4 + 15*x^5 + 26*x^6 + 55*x^7 + 124*x^8 + 284*x^9 + 616*x^10 + 1264*x^11 + 2560*x^12 + ...
RELATED SERIES.
(x*A(x))^(1/2) = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 13*x^7 + 31*x^8 + 72*x^9 + 142*x^10 + ... + A369545(n)*x^n + ...
Let R(x) be the series reversion of A(x),
R(x) = x - 2*x^2 + 5*x^3 - 18*x^4 + 80*x^5 - 376*x^6 + 1805*x^7 - 8902*x^8 + 45133*x^9 - 233728*x^10 + 1229185*x^11 - 6544420*x^12 + ...
then R(x) and g.f. A(x) satisfy:
(1) R(A(x)) = x,
(2) R(x*A(x)) = x^2*(1 + x)^2.
GENERATING METHOD.
Define F(n), a polynomial in x of order 4^(n-1), by the following recurrence:
F(1) = (1 + x),
F(2) = (1 + x^2 * (1+x)^2),
F(3) = (1 + x^4 * (1+x)^4 * F(2)^2),
F(4) = (1 + x^8 * (1+x)^8 * F(2)^4 * F(3)^2),
F(5) = (1 + x^16 * (1+x)^16 * F(2)^8 * F(3)^4 * F(4)^2),
...
F(n+1) = 1 + (F(n) - 1)^2 * F(n)^2
...
Then the g.f. A(x) equals the infinite product:
A(x) = x * F(1)^2 * F(2)^2 * F(3)^2 * ... * F(n)^2 * ...
that is,
A(x) = x * (1+x)^2 * (1 + x^2*(1+x)^2)^2 * (1 + x^4*(1+x)^4*(1 + x^2*(1+x)^2)^2)^2 * (1 + x^8*(1+x)^8*(1 + x^2*(1+x)^2)^4*(1 + x^4*(1+x)^4*(1 + x^2*(1+x)^2)^2)^2)^2 * ...
SPECIFIC VALUES.
A(t) = 1 at t = 0.3384360046958295823592066275665435383235972422078251618...
A(t) = 4*t at t = 0.3784692870047486765098838556524915548738750059484894725...
A(t) = 9*t at t = 0.4341759819254114048195281285997548356246123884244963574...
A(t) = 16*t at t = 0.4503991198003790196716692640273147965490188133038952185...
A(t) = 25*t at t = 0.4569468453244711249969175826010689125973557341955917137...
A(t) = 36*t at t = 0.4601365544772047206117359824349418391381182470957703685...
A(t) = 49*t at t = 0.4618937559082677697073270302481519549410810789191032971...
A(t) = 64*t at t = 0.4629494015907831262609899780911583211703795156858340575...
A(t) = 81*t at t = 0.4636260570981613757787278132015093203097054838324907566...
A(t) = 100*t at t = 0.464081935314930281442469188416597867797429631824213476...
PROG
(PARI) {a(n) = my(A=[1], F); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff( subst(F, x, x^2*(1 + x)^2 ) - x*F , #A+1) ); A[n]}
for(n=1, 35, print1(a(n), ", "))
CROSSREFS
Sequence in context: A095373 A249357 A291400 * A056802 A179991 A026698
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)