The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A369552 Expansion of g.f. A(x) satisfying A(x) = A( x^2*(1+x)^2 ) / x. 7
 1, 2, 3, 8, 15, 26, 55, 124, 284, 616, 1264, 2560, 5145, 10334, 21157, 44396, 94918, 205404, 447798, 980176, 2147217, 4692342, 10202201, 22035060, 47259294, 100704188, 213446378, 450615024, 948696951, 1993590770, 4184002679, 8774184964, 18395154470, 38578533020, 80990279326 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The radius of convergence r of the g.f. A(x) solves r*(1+r)^2 = 1 where r = (((29 + sqrt(837))/2)^(1/3) + ((29 - sqrt(837))/2)^(1/3) - 2)/3 = 0.465571231876768... LINKS Paul D. Hanna, Table of n, a(n) for n = 1..500 FORMULA G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies: (1) A(x) = A( x^2*(1+x)^2 ) / x. (2) R(x*A(x)) = x^2*(1+x)^2, where R(A(x)) = x. (3) A(x) = x * Product_{n>=1} F(n)^2, where F(1) = 1+x, and F(n+1) = 1 + (F(n) - 1)^2 * F(n)^2 for n >= 1. EXAMPLE G.f.: A(x) = x + 2*x^2 + 3*x^3 + 8*x^4 + 15*x^5 + 26*x^6 + 55*x^7 + 124*x^8 + 284*x^9 + 616*x^10 + 1264*x^11 + 2560*x^12 + ... RELATED SERIES. (x*A(x))^(1/2) = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 13*x^7 + 31*x^8 + 72*x^9 + 142*x^10 + ... + A369545(n)*x^n + ... Let R(x) be the series reversion of A(x), R(x) = x - 2*x^2 + 5*x^3 - 18*x^4 + 80*x^5 - 376*x^6 + 1805*x^7 - 8902*x^8 + 45133*x^9 - 233728*x^10 + 1229185*x^11 - 6544420*x^12 + ... then R(x) and g.f. A(x) satisfy: (1) R(A(x)) = x, (2) R(x*A(x)) = x^2*(1 + x)^2. GENERATING METHOD. Define F(n), a polynomial in x of order 4^(n-1), by the following recurrence: F(1) = (1 + x), F(2) = (1 + x^2 * (1+x)^2), F(3) = (1 + x^4 * (1+x)^4 * F(2)^2), F(4) = (1 + x^8 * (1+x)^8 * F(2)^4 * F(3)^2), F(5) = (1 + x^16 * (1+x)^16 * F(2)^8 * F(3)^4 * F(4)^2), ... F(n+1) = 1 + (F(n) - 1)^2 * F(n)^2 ... Then the g.f. A(x) equals the infinite product: A(x) = x * F(1)^2 * F(2)^2 * F(3)^2 * ... * F(n)^2 * ... that is, A(x) = x * (1+x)^2 * (1 + x^2*(1+x)^2)^2 * (1 + x^4*(1+x)^4*(1 + x^2*(1+x)^2)^2)^2 * (1 + x^8*(1+x)^8*(1 + x^2*(1+x)^2)^4*(1 + x^4*(1+x)^4*(1 + x^2*(1+x)^2)^2)^2)^2 * ... SPECIFIC VALUES. A(t) = 1 at t = 0.3384360046958295823592066275665435383235972422078251618... A(t) = 4*t at t = 0.3784692870047486765098838556524915548738750059484894725... A(t) = 9*t at t = 0.4341759819254114048195281285997548356246123884244963574... A(t) = 16*t at t = 0.4503991198003790196716692640273147965490188133038952185... A(t) = 25*t at t = 0.4569468453244711249969175826010689125973557341955917137... A(t) = 36*t at t = 0.4601365544772047206117359824349418391381182470957703685... A(t) = 49*t at t = 0.4618937559082677697073270302481519549410810789191032971... A(t) = 64*t at t = 0.4629494015907831262609899780911583211703795156858340575... A(t) = 81*t at t = 0.4636260570981613757787278132015093203097054838324907566... A(t) = 100*t at t = 0.464081935314930281442469188416597867797429631824213476... PROG (PARI) {a(n) = my(A=[1], F); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff( subst(F, x, x^2*(1 + x)^2 ) - x*F , #A+1) ); A[n]} for(n=1, 35, print1(a(n), ", ")) CROSSREFS Cf. A369545, A350432, A369553, A369554, A369555, A369556. Sequence in context: A095373 A249357 A291400 * A056802 A179991 A026698 Adjacent sequences: A369549 A369550 A369551 * A369553 A369554 A369555 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 25 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)