login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249357
Fibonacci-Zumkeller numbers: a(n)=n if n<=3, otherwise the smallest number >= a(n-2) + a(n-1) having at least one common factor with a(n-2), but none with a(n-1).
3
1, 2, 3, 8, 15, 26, 45, 74, 123, 200, 327, 530, 861, 1396, 2259, 3656, 5919, 9578, 15501, 25082, 40587, 65672, 106263, 171938, 278211, 450151, 728367, 1178527, 1906896, 3085439, 4992336, 8077783, 13070121, 21147910, 34218033, 55365944, 89583981, 144949928, 234533913, 379483844, 614017761, 993501608
OFFSET
1,2
COMMENTS
To construct Fibonacci-like sequence, we use a rule from the definition of A098550.
LINKS
EXAMPLE
a(3)+a(4)=3+8=11. However, gcd(11,3)=1, further, gcd(12,8)>1, gcd(13,3)=1, gcd(14,8)>1, finally, gcd(15,3)>1 and gcd(15,8)=1. Thus 15 is the smallest number >11 which satisfies the definition. So a(5)=15.
MAPLE
for n from 1 to 3 do a[n]:= n od:
for n from 4 to 100 do
for k from a[n-1]+a[n-2] do
if igcd(k, a[n-2]) > 1 and igcd(k, a[n-1]) = 1 then
a[n]:= k;
break
fi
od
od:
seq(a[n], n=1..100); # Robert Israel, Dec 03 2014
MATHEMATICA
A249357={1, 2, 3}; Do[AppendTo[A249357, NestWhile[#+1&, A249357[[-1]]+A249357[[-2]], !(GCD[#, A249357[[-1]]]==1&&GCD[#, A249357[[-2]]]>1)&]], {50}]; A249357 (* Peter J. C. Moses, Dec 03 2014 *)
PROG
(PARI) a(n, show=1, a=3, o=2)={n<3&&return(n); show&&print1("1, 2"); for(i=4, n, show&&print1(", "a); k=a+o; until(gcd(k, o)>1 && gcd(k, a)==1, k++); o=a; a=k); a} \\ M. F. Hasler, Dec 03 2014
(Python)
from fractions import gcd
A249357_list, l1, l2 = [1, 2, 3], 3, 2
for _ in range(100):
....i = l1+l2
....while True:
........if gcd(i, l1) == 1 and gcd(i, l2) > 1:
............A249357_list.append(i)
............l2, l1 = l1, i
............break
........i += 1 # Chai Wah Wu, Dec 04 2014
(Haskell)
a249357 n = a249357_list
a249357_list = 1 : 2 : 3 : f 2 3 where
f u v = y : f v y where
y = head [x | x <- [u + v ..], gcd x u > 1, gcd x v == 1]
-- Reinhard Zumkeller, Dec 04 2014
CROSSREFS
Cf. A251608.
Sequence in context: A128035 A003473 A095373 * A291400 A369552 A056802
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Dec 03 2014
EXTENSIONS
More terms from M. F. Hasler, Dec 03 2014
STATUS
approved