login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249360
Number of length 1+6 0..n arrays with every seven consecutive terms having six times some element equal to the sum of the remaining six
1
2, 395, 2048, 9413, 30848, 84259, 198570, 421913, 823336, 1504241, 2601366, 4297747, 6831608, 10505741, 15697544, 22873679, 32598374, 45551245, 62537376, 84505589, 112561702, 147987947, 192258132, 247057213, 314300264, 396153407
OFFSET
1,1
COMMENTS
Row 1 of A249359
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) -11*a(n-2) +15*a(n-3) -15*a(n-4) +12*a(n-5) -9*a(n-6) +7*a(n-7) -4*a(n-8) +4*a(n-10) -7*a(n-11) +9*a(n-12) -12*a(n-13) +15*a(n-14) -15*a(n-15) +11*a(n-16) -5*a(n-17) +a(n-18)
Also a polynomial of degree 6 plus a quasipolynomial of degree 0 with period 60, the first 12 being:
Empirical for n mod 60 = 0: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + 1
Empirical for n mod 60 = 1: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (983/60)
Empirical for n mod 60 = 2: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (467/5)
Empirical for n mod 60 = 3: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (1373/20)
Empirical for n mod 60 = 4: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (967/15)
Empirical for n mod 60 = 5: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (353/4)
Empirical for n mod 60 = 6: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (551/5)
Empirical for n mod 60 = 7: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (7871/60)
Empirical for n mod 60 = 8: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (1013/5)
Empirical for n mod 60 = 9: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (3109/20)
Empirical for n mod 60 = 10: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (143/3)
Empirical for n mod 60 = 11: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (1819/20)
EXAMPLE
Some solutions for n=6
..3....0....3....2....0....2....4....6....1....2....2....4....4....6....5....6
..3....2....5....6....0....4....0....6....6....3....0....3....2....6....5....3
..4....0....4....0....6....5....6....6....0....4....3....3....5....4....3....0
..4....4....1....0....3....5....6....1....2....1....3....6....5....5....3....4
..5....3....0....0....3....3....6....4....2....5....5....3....2....1....6....3
..3....5....4....2....0....6....2....3....2....3....6....2....6....2....4....3
..6....0....4....4....2....3....4....2....1....3....2....0....4....4....2....2
CROSSREFS
Sequence in context: A249359 A249255 A249171 * A249361 A249362 A249363
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 26 2014
STATUS
approved