The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249360 Number of length 1+6 0..n arrays with every seven consecutive terms having six times some element equal to the sum of the remaining six 1
 2, 395, 2048, 9413, 30848, 84259, 198570, 421913, 823336, 1504241, 2601366, 4297747, 6831608, 10505741, 15697544, 22873679, 32598374, 45551245, 62537376, 84505589, 112561702, 147987947, 192258132, 247057213, 314300264, 396153407 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row 1 of A249359 LINKS R. H. Hardin, Table of n, a(n) for n = 1..54 FORMULA Empirical: a(n) = 5*a(n-1) -11*a(n-2) +15*a(n-3) -15*a(n-4) +12*a(n-5) -9*a(n-6) +7*a(n-7) -4*a(n-8) +4*a(n-10) -7*a(n-11) +9*a(n-12) -12*a(n-13) +15*a(n-14) -15*a(n-15) +11*a(n-16) -5*a(n-17) +a(n-18) Also a polynomial of degree 6 plus a quasipolynomial of degree 0 with period 60, the first 12 being: Empirical for n mod 60 = 0: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + 1 Empirical for n mod 60 = 1: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (983/60) Empirical for n mod 60 = 2: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (467/5) Empirical for n mod 60 = 3: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (1373/20) Empirical for n mod 60 = 4: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (967/15) Empirical for n mod 60 = 5: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (353/4) Empirical for n mod 60 = 6: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (551/5) Empirical for n mod 60 = 7: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (7871/60) Empirical for n mod 60 = 8: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (1013/5) Empirical for n mod 60 = 9: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n - (3109/20) Empirical for n mod 60 = 10: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (143/3) Empirical for n mod 60 = 11: a(n) = (7/6)*n^6 + (14/5)*n^5 + (21/4)*n^4 + (14/3)*n^3 + (7/2)*n^2 + n + (1819/20) EXAMPLE Some solutions for n=6 ..3....0....3....2....0....2....4....6....1....2....2....4....4....6....5....6 ..3....2....5....6....0....4....0....6....6....3....0....3....2....6....5....3 ..4....0....4....0....6....5....6....6....0....4....3....3....5....4....3....0 ..4....4....1....0....3....5....6....1....2....1....3....6....5....5....3....4 ..5....3....0....0....3....3....6....4....2....5....5....3....2....1....6....3 ..3....5....4....2....0....6....2....3....2....3....6....2....6....2....4....3 ..6....0....4....4....2....3....4....2....1....3....2....0....4....4....2....2 CROSSREFS Sequence in context: A249359 A249255 A249171 * A249361 A249362 A249363 Adjacent sequences:  A249357 A249358 A249359 * A249361 A249362 A249363 KEYWORD nonn AUTHOR R. H. Hardin, Oct 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 21:08 EDT 2022. Contains 354043 sequences. (Running on oeis4.)