The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268653 E.g.f.: exp( T(T(T(x))) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169). 4
 1, 1, 7, 82, 1345, 28396, 734149, 22485898, 796769201, 32084546824, 1447917011461, 72411962077126, 3976481464087609, 237939307837951708, 15412492927027232261, 1074675869343994244266, 80270802348342665849569, 6395153963612453962942096, 541390375948749181692141061, 48536543026953818449535683054, 4594206854845500504888845269481, 457878082780635055560866092165156, 47930551834845432770784732668907205 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..150 FORMULA E.g.f. satisfies: (1) A(x) = A(x/exp(x))^A(x). (2) A(x) = W( x*W(x) * W(x*W(x)) ), where W(x) = LambertW(-x)/(-x). (3) A(x) = W( x*W(x) )^A(x), where W(x) = LambertW(-x)/(-x). (4) A(x) = exp( -A(x)*LambertW(LambertW(-x)) ). (5) A(x) = ( LambertW(LambertW(-x)) / LambertW(-x) )^A(x). (6) A(x/exp(x)) = exp(T(T(x))) = LambertW(LambertW(-x)) / LambertW(-x). a(n) ~ exp(1 + (exp(-1) + exp(-1 - exp(-1)))*n) * n^(n-1) / sqrt((1 - exp(-1))*(1-exp(-1 - exp(-1)))). - Vaclav Kotesovec, Apr 01 2016 EXAMPLE E.g.f.: A(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! + 22485898*x^7/7! + 796769201*x^8/8! +... where A(x) = A( x/exp(x) )^A(x). RELATED SERIES. Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins: W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + 7^5*x^6/6! + 8^6*x^7/7! + 9^7*x^8/8! +...+ A000272(n+1)*x^n/n! +... then (1) A(x) = W( x*W(x) * W(x*W(x)) ), (2) A(x) = W( x*W(x) )^A(x), (3) A(x) = exp( A(x) * x*W(x) * W(x*W(x)) ), (4) A(x/exp(x)) = W(x*W(x)). Let G(x) = A(x/exp(x)), which begins: G(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + 3774513*x^7/7! + 101808185*x^8/8! +...+ A227176(n)*x^n/n! +... then W(x), G(x), and A(x) are in the family of functions that begin: (1) W(x) = exp(x)^W(x) = exp(T(x)), (2) G(x) = W(x)^G(x) = exp(T(T(x))), (3) A(x) = G(x)^A(x) = exp(T(T(T(x)))), ... where T(x) = -LambertW(-x) is Euler's tree function: T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + 6^5*x^6/! + 7^6*x^7/7! + 8^7*x^8/8! +...+ A000169(n)*x^n/n! +... PROG (PARI) /* E.g.f.: A(x) = exp(T(T(T(x))) ) */ {a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(exp(subst(T, x, subst(T, x, T))), n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* E.g.f.: A(x) = W( x*W(x) * W(x*W(x)) ) */ {a(n)=local(W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(subst(W, x, subst(x*W, x, x*W)), n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* E.g.f.: A(x) = exp( -A(x)*LambertW(LambertW(-x)) ) */ {a(n)=local(A=1+x, LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n)); for(i=1, n, A=exp(-A*subst(LambertW, x, subst(LambertW, x, -x)) +x*O(x^n))); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* E.g.f.: A(x) = ( LambertW(LambertW(-x))/LambertW(-x) )^A(x) */ {a(n)=local(A=1+x, W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n)); for(i=1, n, A=subst(W, x, x*W)^A); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A227176, A227278, A000169, A000272. Sequence in context: A304870 A191804 A243672 * A242375 A333984 A244821 Adjacent sequences: A268650 A268651 A268652 * A268654 A268655 A268656 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 05:02 EST 2022. Contains 358454 sequences. (Running on oeis4.)