The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268650 G.f. A(x) satisfies: 1 = Product_{n>=1} (1 - A(x)^n) * (1 - A(x)^n*x) * (1 - A(x)^(n-1)/x). 3
 1, 1, 3, 12, 50, 228, 1093, 5439, 27816, 145310, 772109, 4159998, 22674120, 124800022, 692686326, 3872659052, 21788990982, 123280580325, 700988359296, 4003661444545, 22958337467658, 132127737109116, 762912391705495, 4418326909800903, 25658693934333564, 149385658937180542, 871758439355580702, 5098248338356022913, 29875567243598952092, 175396705518901173813, 1031531740231929729207 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The g.f. utilizes the Jacobi Triple Product: Product_{n>=1} (1-x^n)*(1 - x^n/a)*(1 - x^(n-1)*a) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * a^n. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..512 FORMULA G.f. A(x) satisfies: (1) 1 = Sum_{n=-oo..+oo} A(x)^(n*(n-1)/2) * (-1/x)^n. (2) -x = Sum_{n>=0} A(x)^(n*(n+1)/2) * (1 - x^(2*n+1)) / (-x)^n. (3) -x = Sum_{n=-oo..+oo} A(x)^(n*(n-1)/2) * (-x)^n. (4) -x = Product_{n>=1} (1 - A(x)^n) * (1 - A(x)^n/x) * (1 - A(x)^(n-1)*x). (5) -x/(1-x) = Product_{n>=1} (1 - A(x)^n) * (1 - (x+1/x)*A(x)^n + A(x)^(2*n)). a(n) ~ c * d^n / n^(3/2), where d = 6.1842071022304098678015128954668969... and c = 0.0509064807103441056564968325417718... . - Vaclav Kotesovec, Mar 05 2016 EXAMPLE G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 50*x^5 + 228*x^6 + 1093*x^7 + 5439*x^8 + 27816*x^9 + 145310*x^10 + 772109*x^11 + 4159998*x^12 + 22674120*x^13 + 124800022*x^14 + 692686326*x^15 + 3872659052*x^16 +... where A(x) satisfies the Jacobi Triple Product: 1 = (1-A(x))*(1-A(x)*x)*(1-1/x) * (1-A(x)^2)*(1-A(x)^2*x)*(1-A(x)/x) * (1-A(x)^3)*(1-A(x)^3*x)*(1-A(x)^2/x) * (1-A(x)^4)*(1-A(x)^4*x)*(1-A(x)^3/x) * (1-A(x)^5)*(1-A(x)^5*x)*(1-A(x)^4/x) * (1-A(x)^6)*(1-A(x)^6*x)*(1-A(x)^5/x) *... also -x = (1-A(x))*(1-A(x)/x)*(1-x) * (1-A(x)^2)*(1-A(x)^2/x)*(1-A(x)*x) * (1-A(x)^3)*(1-A(x)^3/x)*(1-A(x)^2*x) * (1-A(x)^4)*(1-A(x)^4/x)*(1-A(x)^3*x) * (1-A(x)^5)*(1-A(x)^5/x)*(1-A(x)^4*x) * (1-A(x)^6)*(1-A(x)^6/x)*(1-A(x)^5*x) +... further, -x = (1-x) - A(x)*(1-x^3)/x + A(x)^3*(1-x^5)/x^2 - A(x)^6*(1-x^7)/x^3 + A(x)^10*(1-x^9)/x^4 - A(x)^15*(1-x^11)/x^5 + A(x)^21*(1-x^13)/x^6 +... PROG (PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec( sum(m=1, sqrtint(2*#A)+2, (-1)^m*(x*Ser(A))^(m*(m-1)/2)*(1-x^(2*m-1))/x^m) )[#A-1] ); A[n]} for(n=1, 40, print1(a(n), ", ")) CROSSREFS Cf. A268299, A268651. Sequence in context: A191242 A105479 A151180 * A151181 A094601 A242155 Adjacent sequences:  A268647 A268648 A268649 * A268651 A268652 A268653 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 02 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 14:07 EST 2020. Contains 331338 sequences. (Running on oeis4.)