login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268648
G.f. A(x) satisfies: 1/(1-x) = Product_{n>=1} A( x^n - x^(n+1) ).
1
1, 1, 1, 2, 5, 15, 46, 149, 495, 1682, 5806, 20322, 71919, 256936, 925298, 3355509, 12242471, 44906105, 165503745, 612575796, 2276024836, 8485972958, 31739314999, 119054638380, 447759005393, 1688108544222, 6378722610280, 24153083898505, 91633201241544, 348270745289976, 1325907389447937, 5055855150302197, 19307179347881167, 73832434701139921, 282712142418209398, 1083873025643898568, 4160250292584533013, 15986022831150313756, 61491665982535018897
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * 4^n / n^(3/2), where c = 0.197157770057765155... . - Vaclav Kotesovec, Apr 02 2016
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 46*x^6 + 149*x^7 + 495*x^8 + 1682*x^9 + 5806*x^10 + 20322*x^11 + 71919*x^12 +...
where
1/(1-x) = A(x-x^2) * A(x^2-x^3) * A(x^3-x^4) * A(x^4-x^5) * A(x^5-x^6) *...
RELATED SERIES.
A(x-x^2) = 1 + x + x^5 - x^6 + 3*x^7 - 3*x^8 + 6*x^9 - 12*x^10 + 33*x^11 +...
A(x^2-x^3) = 1 + x^2 - x^3 + x^4 - 2*x^5 + 3*x^6 - 6*x^7 + 11*x^8 - 22*x^9 +...
A(x^3-x^4) = 1 + x^3 - x^4 + x^6 - 2*x^7 + x^8 + 2*x^9 - 6*x^10 + 6*x^11 +...
A(x^4-x^5) = 1 + x^4 - x^5 + x^8 - 2*x^9 + x^10 + 2*x^12 - 6*x^13 + 6*x^14 +...
...
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A] = 1 - Vec( prod(k=1, #A, subst(Ser(A), x, x^k*(1-x))) )[#A] ); A[n+1]}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A071731 A360272 A376574 * A148360 A148361 A346521
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 26 2016
STATUS
approved