login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346521
Total number of partitions of all n-multisets {0,...,0,1,2,...,j} into distinct multisets for 0 <= j <= n.
3
1, 2, 5, 15, 46, 161, 624, 2669, 12483, 63261, 344631, 2005058, 12390086, 80945545, 556896913, 4021109557, 30382294412, 239589006143, 1967343509525, 16786587081641, 148561276135546, 1361378815644787, 12897870827339021, 126158299918183469, 1272377007364596242
OFFSET
0,2
COMMENTS
Also total number of factorizations of 2^(n-j) * Product_{i=1..j} prime(i+1) into distinct factors for 0 <= j <= n; a(2) = 5: 4, 2*3, 6, 3*5, 15; a(3) = 15: 2*4, 8, 3*4, 2*6, 12, 2*3*5, 5*6, 3*10, 2*15, 30, 3*5*7, 7*15, 5*21, 3*35, 105.
LINKS
FORMULA
a(n) = Sum_{j=0..n} A346520(n-j,j).
a(n) = Sum_{j=0..n} A045778(A000079(n-j)*A070826(j+1)).
EXAMPLE
a(2) = 5: 00, 01, 0|1, 12, 1|2.
a(3) = 15: 000, 0|00, 001, 00|1, 0|01, 012, 0|12, 02|1, 01|2, 0|1|2, 123, 1|23, 13|2, 12|3, 1|2|3.
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
s:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
end:
S:= proc(n, k) option remember; coeff(s(n), x, k) end:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i=0, g(n), add(b(n-j, i-1), j=0..n)))
end:
A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k):
a:= n-> add(A(n-j, j), j=0..n):
seq(a(n), n=0..24);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];
S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, g[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
A[n_, k_] := Sum[S[k, j]*b[n, j], {j, 0, k}];
a[n_] := Sum[A[n - j, j], {j, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 31 2021, after Alois P. Heinz *)
CROSSREFS
Antidiagonal sums of A346520.
Sequence in context: A268648 A148360 A148361 * A148362 A143094 A308274
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2021
STATUS
approved