login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346519
Number of partitions of the 2n-multiset {0,...,0,1,2,...,n} into distinct multisets.
3
1, 2, 9, 59, 442, 3799, 36332, 379831, 4288933, 51867573, 667168482, 9076862555, 130018298663, 1953284957029, 30675458303547, 502166867458649, 8547908294767932, 150965367603029126, 2760941474553823577, 52196915577464262360, 1018499212583077293854
OFFSET
0,2
COMMENTS
Also number of factorizations of 2^n * Product_{i=1..n} prime(i+1) into distinct factors; a(2) = 9: 3*4*5, 2*5*6, 6*10, 2*3*10, 5*12, 4*15, 3*20, 2*30, 60.
LINKS
FORMULA
a(n) = A045778(A000079(n)*A070826(n+1)).
a(n) = Sum_{j=0..n} Stirling2(n,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000009(n-i).
a(n) = A346520(n,n).
EXAMPLE
a(0) = 1: {}.
a(1) = 2: 01, 0|1.
a(2) = 9: 00|1|2, 001|2, 1|002, 0|01|2, 0|1|02, 01|02, 00|12, 0|012, 0012.
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
s:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
end:
S:= proc(n, k) option remember; coeff(s(n), x, k) end:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i=0, g(n), add(b(n-j, i-1), j=0..n)))
end:
a:= n-> add(S(n, j)*b(n, j), j=0..n):
seq(a(n), n=0..20);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];
S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, g[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
a[n_] := Sum[S[n, j]*b[n, j], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 06 2022, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A346520.
Sequence in context: A005364 A267464 A184355 * A151616 A199543 A009636
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2021
STATUS
approved