login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184355
G.f.: Sum_{n>=0} x^n / [Sum_{k>=0} C(n+k-1,k)^2*(-x)^k]^n.
4
1, 1, 2, 9, 58, 515, 6117, 89015, 1582412, 33346657, 816759195, 22980062928, 733407740393, 26280164467356, 1048777166376622, 46274709506560769, 2242998363098170350, 118779992677414890453, 6838446632281205146327, 426147448479639862008434, 28631211803547719170094520
OFFSET
0,3
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n * (1+x)^(2*n^2-n) / [Sum_{k=0..n-1} C(n-1,k)^2*(-x)^k]^n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 58*x^4 + 515*x^5 + 6117*x^6 +...
which equals the sum of the series:
A(x) = 1 + x/(1 - x + x^2 - x^3 + x^4 - x^5 +...)
+ x^2/(1 - 2^2*x + 3^2*x^2 - 4^2*x^3 + 5^2*x^4 + 6^2*x^5 +...)^2
+ x^3/(1 - 3^2*x + 6^2*x^2 - 10^2*x^3 + 15^2*x^4 - 21^2*x^5 +...)^3
+ x^4/(1 - 4^2*x + 10^2*x^2 - 20^2*x^3 + 35^2*x^4 - 56^2*x^5 +...)^4
+ x^5/(1 - 5^2*x + 15^2*x^2 - 35^2*x^3 + 70^2*x^4 - 126^2*x^5 +...)^5
+ x^6/(1 - 6^2*x + 21^2*x^2 - 56^2*x^3 + 126^2*x^4 - 252^2*x^5 +...)^6 +...
The g.f. can also be expressed as:
A(x) = 1 + x*(1+x) + x^2*(1+x)^6/(1-x)^2
+ x^3*(1+x)^15/(1 - 2^2*x + x^2)^3
+ x^4*(1+x)^28/(1 - 3^2*x + 3^2*x^2 - x^3)^4
+ x^5*(1+x)^45/(1 - 4^2*x + 6^2*x^2 - 4^2*x^3 + x^4)^5
+ x^6*(1+x)^66/(1 - 5^2*x + 10^2*x^2 - 10^2*x^3 + 5^2*x^4 - x^5)^6
+ x^7*(1+x)^91/(1 - 6^2*x + 15^2*x^2 - 20^2*x^3 + 15^2*x^4 - 6^2*x^5 + x^6)^7 +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, sum(k=0, n, binomial(m+k-1, k)^2*(-x)^k +x*O(x^n))^-m*x^m) +x*O(x^n), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(sum(m=0, n, sum(k=0, m-1, binomial(m-1, k)^2*(-x)^k)^-m*x^m*(1+x+x*O(x^n))^(2*m^2-m)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 12 2011
STATUS
approved