login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183166
G.f.: Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k]^n*x^n.
4
1, 1, 2, 9, 46, 343, 3025, 32811, 417348, 6106921, 102307571, 1918139824, 40190540565, 928661958828, 23551552524966, 651213150740841, 19523328447786346, 631923020784069573, 21984209405892842663, 819109566359501449734, 32576039720255480451008, 1378639634715738629523321
OFFSET
0,3
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n * (1-x)^(2*n^2 + n) * [Sum_{k>=0} C(n+k,k)^2 * x^k]^n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 46*x^4 + 343*x^5 + 3025*x^6 +...
equals the sum of the series:
A(x) = 1 + (1+x)*x + (1 + 2^2*x + x^2)^2*x^2 +
+ (1 + 3^2*x + 3^2*x^2 + x^3)^3*x^3
+ (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)^4*x^4
+ (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^5*x^5
+ (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)^6*x^6 +...
The g.f. can also be expressed as:
A(x) = 1 + x*(1-x)^3*(1 + 2^2*x + 3^2*x^2 + 4^2*x^3 + 5^2*x^4 +...)
+ x^2*(1-x)^10*(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 +...)^2
+ x^3*(1-x)^21*(1 + 4^2*x + 10^2*x^2 + 20^2*x^3 + 35^2*x^4 +...)^3
+ x^4*(1-x)^36*(1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 +...)^4
+ x^5*(1-x)^55*(1 + 6^2*x + 21^2*x^2 + 56^2*x^3 + 126^2*x^4 +...)^5 +...
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(m=0, n, sum(k=0, m, binomial(m, k)^2*X^k)^m*x^m) +x*O(x^n), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*(1-x+x*O(x^n))^(2*m^2+m)*sum(k=0, n-m+1, binomial(m+k, k)^2*x^k+x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 30 2010
STATUS
approved