login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219614
Number of ways to put n labeled objects into n labeled boxes so that no two nonempty boxes are adjacent.
1
1, 1, 2, 9, 46, 335, 2786, 28357, 325382, 4280859, 62437882, 1010306825, 17852477006, 343275422503, 7120802805650, 158697470231757, 3778977532041430, 95794295907958547, 2574920565897373610, 73164585387874543057, 2191028450841437523230, 68974613397532849153311
OFFSET
0,3
FORMULA
a(n) = Sum_{k>=0} binomial(n-k+1,k)*Stirling2(n,k)*k!.
Limit n->infinity (a(n)/n!)^(1/n) = (3*r^2-3*r+1)/(1-2*r) = 1.53445630931668421506236..., where r = 0.410751485627... is the root of the equation (1-2*r)^2 + r*(1-3*r+3*r^2)*LambertW(-exp(-1/r)/r) = 0. - Vaclav Kotesovec, Dec 08 2012
EXAMPLE
a(3) = 9 because we have: (1,1,3), (1,3,1), (1,3,3), (3,1,1), (3,1,3), (3,3,1), (1,1,1), (2,2,2), (3,3,3).
MAPLE
with (combinat):
a:= n-> add(stirling2(n, k)*k! *binomial(n-k+1, k), k=0..ceil(n/2)):
seq (a(n), n=0..30); # Alois P. Heinz, Dec 06 2012
MATHEMATICA
Table[Sum[Binomial[n-k+1, k]StirlingS2[n, k]k!, {k, 0, n}], {n, 0, 20}]
(* Program for numerical value of the limit (a(n)/n!)^(1/n) *) (3*r^2-3*r+1)/(1-2*r)/.FindRoot[(1-2*r)^2+r*(1-3*r+3*r^2)*LambertW[-E^(-1/r)/r]==0, {r, 1/2}, WorkingPrecision->100] (* Vaclav Kotesovec, Dec 08 2012 *)
CROSSREFS
Cf. A120368.
Sequence in context: A365855 A373312 A134091 * A183166 A032331 A049371
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 06 2012
STATUS
approved