login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to put n labeled objects into n labeled boxes so that no two nonempty boxes are adjacent.
1

%I #40 Sep 12 2015 11:00:29

%S 1,1,2,9,46,335,2786,28357,325382,4280859,62437882,1010306825,

%T 17852477006,343275422503,7120802805650,158697470231757,

%U 3778977532041430,95794295907958547,2574920565897373610,73164585387874543057,2191028450841437523230,68974613397532849153311

%N Number of ways to put n labeled objects into n labeled boxes so that no two nonempty boxes are adjacent.

%H Alois P. Heinz, <a href="/A219614/b219614.txt">Table of n, a(n) for n = 0..200</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Interesting asymptotic formulas for binomial sums</a>, Jun 09 2013

%F a(n) = Sum_{k>=0} binomial(n-k+1,k)*Stirling2(n,k)*k!.

%F Limit n->infinity (a(n)/n!)^(1/n) = (3*r^2-3*r+1)/(1-2*r) = 1.53445630931668421506236..., where r = 0.410751485627... is the root of the equation (1-2*r)^2 + r*(1-3*r+3*r^2)*LambertW(-exp(-1/r)/r) = 0. - _Vaclav Kotesovec_, Dec 08 2012

%e a(3) = 9 because we have: (1,1,3), (1,3,1), (1,3,3), (3,1,1), (3,1,3), (3,3,1), (1,1,1), (2,2,2), (3,3,3).

%p with (combinat):

%p a:= n-> add(stirling2(n, k)*k! *binomial(n-k+1, k), k=0..ceil(n/2)):

%p seq (a(n), n=0..30); # _Alois P. Heinz_, Dec 06 2012

%t Table[Sum[Binomial[n-k+1,k]StirlingS2[n,k]k!,{k,0,n}],{n,0,20}]

%t (* Program for numerical value of the limit (a(n)/n!)^(1/n) *) (3*r^2-3*r+1)/(1-2*r)/.FindRoot[(1-2*r)^2+r*(1-3*r+3*r^2)*LambertW[-E^(-1/r)/r]==0,{r,1/2},WorkingPrecision->100] (* _Vaclav Kotesovec_, Dec 08 2012 *)

%Y Cf. A120368.

%K nonn

%O 0,3

%A _Geoffrey Critzer_, Dec 06 2012