login
A365855
Expansion of (1/x) * Series_Reversion( x*(1+x)^2*(1-x)^4 ).
4
1, 2, 9, 46, 264, 1612, 10291, 67830, 458109, 3153744, 22049065, 156127140, 1117369884, 8069610992, 58735003740, 430416574918, 3172987081311, 23514565653058, 175083678670264, 1309132916709168, 9825882638364144, 74003924059921940, 559112987425763365
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(2*n+k+1,k) * binomial(5*n-k+3,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(3*n-2*k+1,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x)^2 * (1-x)^4 )^(n+1). - Seiichi Manyama, Feb 16 2024
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(2*n+k+1, k)*binomial(5*n-k+3, n-k))/(n+1);
(SageMath)
def A365855(n):
h = binomial(5*n + 3, n) * hypergeometric([-n, 2*n + 2], [-5 * n - 3], -1) / (n + 1)
return simplify(h)
print([A365855(n) for n in range(23)]) # Peter Luschny, Sep 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 20 2023
STATUS
approved