login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365752
Expansion of (1/x) * Series_Reversion( x*(1+x)*(1-x)^4 ).
9
1, 3, 16, 103, 735, 5592, 44452, 364815, 3067558, 26290517, 228819168, 2016953848, 17968790029, 161536295244, 1463535347928, 13349907110367, 122499957767130, 1130001670577730, 10472708110616136, 97468774074103041, 910582642690819351
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+k,k) * binomial(5*n-k+3,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(4*n-2*k+2,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x) * (1-x)^4 )^(n+1). - Seiichi Manyama, Feb 16 2024
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n+k, k)*binomial(5*n-k+3, n-k))/(n+1);
(SageMath)
def A365752(n):
h = binomial(5*n + 3, n) * hypergeometric([-n, n + 1], [-5 * n - 3], -1) / (n + 1)
return simplify(h)
print([A365752(n) for n in range(21)]) # Peter Luschny, Sep 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 18 2023
STATUS
approved