login
A365752
Expansion of (1/x) * Series_Reversion( x*(1+x)*(1-x)^4 ).
9
1, 3, 16, 103, 735, 5592, 44452, 364815, 3067558, 26290517, 228819168, 2016953848, 17968790029, 161536295244, 1463535347928, 13349907110367, 122499957767130, 1130001670577730, 10472708110616136, 97468774074103041, 910582642690819351
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+k,k) * binomial(5*n-k+3,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(4*n-2*k+2,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x) * (1-x)^4 )^(n+1). - Seiichi Manyama, Feb 16 2024
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n+k, k)*binomial(5*n-k+3, n-k))/(n+1);
(SageMath)
def A365752(n):
h = binomial(5*n + 3, n) * hypergeometric([-n, n + 1], [-5 * n - 3], -1) / (n + 1)
return simplify(h)
print([A365752(n) for n in range(21)]) # Peter Luschny, Sep 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 18 2023
STATUS
approved