login
A365754
Expansion of (1/x) * Series_Reversion( x*(1-x)/(1+x)^4 ).
12
1, 5, 36, 305, 2833, 27916, 286632, 3033513, 32858595, 362515725, 4059475368, 46021411644, 527163783916, 6092053249160, 70939443268112, 831558454663449, 9804617762941095, 116201796106426543, 1383557994261012100, 16541672701743657545, 198510770031798279825
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(4*(n+1),n-k).
a(n) = (1/(n+1)) * [x^n] ( (1+x)^4 / (1-x) )^(n+1). - Seiichi Manyama, Feb 17 2024
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+k, k)*binomial(4*(n+1), n-k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 18 2023
STATUS
approved