login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286765
Total number of nodes summed over all lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1), H=(1,0) and S=(0,1).
2
1, 5, 36, 320, 3204, 34488, 389320, 4542784, 54298992, 660897208, 8157832672, 101824497960, 1282453483896, 16272274720064, 207749196820392, 2666235340584848, 34371222980687520, 444797703379924056, 5775424372048775480, 75210745056872493904
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * d^n / sqrt(n), where d = 1/6*(19009+153*sqrt(17))^(1/3) + 356/(3*(19009+153*sqrt(17))^(1/3)) + 14/3 = 13.561653982718396285180676888474... and c = 0.07613479032254374377532022793959758358787485106312078041310724993901032... - Vaclav Kotesovec, Sep 11 2021
MAPLE
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, [1$2],
(p-> p+[0, p[1]])(b(x-1, y)+b(x, y-1)+b(x-1, y+1)+b(x-1, y-1))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..30);
MATHEMATICA
b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, {1, 1}, Function[p, p + {0, p[[1]]}][b[x-1, y] + b[x, y-1] + b[x-1, y+1] + b[x-1, y-1]]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 06 2023, after Alois P. Heinz *)
CROSSREFS
Cf. A225042.
Sequence in context: A365754 A341961 A278576 * A267980 A187827 A291688
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 14 2017
STATUS
approved