login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187827
G.f. satisfies: A(x) = Sum_{n>=0} (1 - (1 - x*A(x))^n)^n.
3
1, 1, 5, 36, 325, 3468, 42519, 590268, 9201740, 160150252, 3095440553, 66068011710, 1547572760559, 39529002357409, 1094096683131616, 32622859912512090, 1042350065213470532, 35521574976088978133, 1285782300453328211074, 49256935742079848796102
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = Sum_{n>=1} (1-x*A(x))^n * (1 - (1-x*A(x))^n)^(n-1).
a(n) ~ c * n^n / (exp(n) * (log(2))^(2*n)), where c = 3.7860088... . - Vaclav Kotesovec, Nov 08 2014
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 36*x^3 + 325*x^4 + 3468*x^5 + 42519*x^6 +...
where the g.f. satisfies the identities:
(1) A(x) = 1 + x*A(x) + (1 - (1-x*A(x))^2)^2 + (1 - (1-x*A(x))^3)^3 + (1 - (1-x*A(x))^4)^4 + (1 - (1-x*A(x))^5)^5 +...
(2) A(x) = (1-x*A(x)) + (1-x*A(x))^2*(1 - (1-x*A(x))^2) + (1-x*A(x))^3*(1 - (1-x*A(x))^3)^2 + (1-x*A(x))^4*(1 - (1-x*A(x))^4)^3 + (1-x)^5*(1 - (1-x*A(x))^5)^4 +...
PROG
(PARI) {a(n)=local(q, A=1); for(i=1, n, q=1/(1-x*A+x*O(x^n)); A=sum(k=0, n+1, q^(-k^2)*(q^k-1)^k)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(q, A=1); for(i=1, n, q=1/(1-x*A+x*O(x^n)); A=sum(k=1, n+1, q^(-k^2)*(q^k-1)^(k-1))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A278576 A286765 A267980 * A291688 A300987 A067305
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 27 2012
STATUS
approved