login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A365756
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^3*A(x)^4).
1
1, 1, 1, 1, 2, 7, 22, 58, 142, 363, 1014, 2966, 8645, 24824, 71189, 206742, 609159, 1809493, 5388804, 16073002, 48092377, 144532884, 436168716, 1320372837, 4006489208, 12183544414, 37132838866, 113426618425, 347191793705, 1064688271730, 3270387354434
OFFSET
0,5
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * binomial(n+k+1,n-3*k) / (n+k+1).
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(n+k+1, n-3*k)/(n+k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 18 2023
STATUS
approved